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Search in Artificial Intelligence is a problem-solving technique that 

systematically explores a space of problem states. Branch and Bound (B&B) and 

A* searching techniques are effective heuristic principle guided Artificial 

Intelligence Problem-Solving Techniques. Fuzzy Logic is related to Expert 

Systems, as an effective Expert systems tool which can deal with imprecise 

and uncertain data and permit inexact reasoning. 

A search problem and its solution by the existing crisp methods of “Branch and 

Bound” and A* search have been considered in this work. We have observed that 

these methods can be improved by using fuzzy theory. 

 In this dissertation, new methods of B&B and A* searching techniques with 

fuzzy underestimation to the available Fuzzy information have been proposed by 

applying the Triangular Fuzzy Number Model in order to add Fuzzy 

Underestimation to the existing algorithms. A new improved version of searching 

techniques under uncertainty has been suggested. The corresponding algorithms 

have been given, and each of the two algorithms have been explained in details 

using two applications.  
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A simulation program has been introduced to evaluate the performance of 

the proposed algorithms. Six Searching techniques were analyzed and compared 

by computing Number of Iterations, Time Complexity, Space Complexity, and 

Effective Branching Factor for each algorithm. The proposed algorithms have 

been implemented and tested; The analysis and simulation results showed that 

Fuzzy Underestimated A* and Fuzzy Underestimated “Branch and Bound” 

search techniques have achieved better efficiency, time complexity, and effective 

branching factor than all other compared searching techniques. Fuzzy 

underestimation increases the efficiency of A* and B&B Augmented by Crisp 

Underestimation,   enabling it to be more informed. Space complexity for Fuzzy 

A* and Fuzzy Underestimated B&B is always less than that for crisp algorithms. 

The analysis also proved that Time complexity for Fuzzy A* is better than that for 

Fuzzy Underestimated B&B, but with more Space complexity.  

This is because Fuzzy A* has more memory requirements compared to Fuzzy 

B&B due to A* maintaining all the generated nodes in memory. 
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1.1.Overview 
 

Since the beginning of creation, humans have always searched for 

something or someone, starting by Adam when he searched for Eve. Till now 

humans are still searching for things using everything they can afford. 

This dissertation deals with applying Fuzzy Logic to enhance Branch and 

Bound and A* Searching Techniques, which are two of the best Heuristic 

problem solving techniques in Artificial Intelligence, while Fuzzy Logic is used 

as an effective Expert System tool. All of these techniques will be discussed. 

1.1.1 Search Definition according to different fields. 
 
Search or searching in general is the act of trying to find something or 

someone. It is possible to distinguish between two forms of search. One may 

search for an item that is known to exist, with the intent to locate it. On the other 

hand one may search for an item whose existence is uncertain, in order to 

ascertain whether it exists or not. Searching can also be a metaphorical act, most 

frequently in reference to intangibles such as memories and emotions (Wikipedia 

Org., 2007). 

Search is common, and can be used in many different areas of life, where 

there are different meanings for search according to type or field of searching, 

where search may mean  the act and process of locating information in various 
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 sources. For example, looking for a book in a library catalog (buffalo, Feb. 

27, 2007), locating files scattered across the Internet, when you enter the engine 

name or key words, popular ones include Yahoo, Lycos, Google and Alta Vista 

(ncsu, Feb. 27, 2007), or locating information contained in a database by entering 

words or numbers in a search box (siue, Feb. 27, 2007) , while search in CDMA 

(Code Division Multiple Access) is a process where the phone scans the phase 

space of the short code looking for valid signals (san, Feb. 27, 2007) .There are 

a lot of different searching techniques, which are related to different fields like: 

networks searching techniques (Li & Wu,2002), database search techniques (KU 

Lib.2007), and web search techniques. 

Artificial Intelligence (AI) is one of the most important fields in which search 

is an important topic; where search in Artificial Intelligence is a problem-solving 

technique that systematically explores a space of problem states, i.e., successive 

and alternative stages in the problem-solving process. Examples of problem 

states might include the different board configurations in a game or intermediate 

steps in a reasoning process. This space of alternative solutions is then searched 

to find an answer (Luger, 2005). Newell and Simon have argued that this is the 

essential basis of human problem solving (Newell & Simon, 1976). Indeed, when 

a chess player examines the effects of different moves or a doctor considers a 

number of alternative diagnoses, they are searching among alternatives (Luger, 

2005). 

1.1.2 Artificial Intelligence Definition, and Activities  
Intelligence is the ability to learn and understand, to solve 

problems and to make decisions (Negnevitsky, 2002). While AI is a branch of 
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 computer science dealing with computer systems implementing restricted 

but definite part of human intelligence, particularly in knowledge acquisition, 

perception, learning, reasoning (Bhatkar, 1994).  

A machine is thought to be intelligent if it can achieve human-level 

performance in some cognitive task. To build an intelligent machine, we 

have to capture, organize and use human expert knowledge in some 

problem area. (Negnevitsky, 2002). Intelligent Systems can help Experts to 

solve difficult analysis problems. Artificial intelligence can help us to solve 

difficult, real-world problems, creating new opportunities in business, 

engineering, and many other application areas. The engineering goal of 

artificial intelligence is to solve real-world problems; the scientific goal of 

Artificial Intelligence is to explain various sorts of intelligence (Winston, 

2000). 

From an engineering perspective, the description of artificial intelligence 

may be summarized as the study of representation and search through which 

intelligent activity can be enacted on a mechanical device. This perspective has 

dominated the origins and growth of AI (Negnevitsky, 2002). 

The definition obviously lists the core activities of modern AI science, but 

it is necessary that it be kept open for additional aspect of intelligent behavior 

(Bhatkar, 1994). 

Form the above definition it is evident that, while dealing with artificial intelligence, 

not only the achievements of contemporary mathematics & computer science are 

relevant, but also the results of disciplines from the humanities such as:  

linguistics, cognitive science, psychology, etc., as well as psychology, neurology, 
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 prosthetic, etc.. Apart from the character the AI might be given, the applied 

artificial intelligence should be viewed as part of engineering, implementing the 

intelligent systems for: natural language processing, speech understanding, 

computer vision, autonomous robots, and domain expertizing (Including the 

earlier systems for game-plying, theorem proving, general problems solving, etc.) 

(Bhatkar, 1994).  

1.1.3 Fuzzy Logic, and Fuzzy Logic Activities 
 

Fuzzy sets were initiated by Zadeh (Zadeh, 1965). In (Zadeh,1973) 

Zadeh made an extension of the concept of a fuzzy set by an interval-valued 

fuzzy set (i.e. a fuzzy set with an interval-valued membership function) (Bustince 

& Burillo, 1995). Since then, researchers have found numerous ways to 

utilize this theory to develop new mathematical methods of fuzzy inference and 

approximate reasoning (Baldwin, 1981; Gaines, 1976;Hellendoorn ,1992; 

Yager, 1980; Zadeh, 1975; Sun & Hadipriono, 1995) . In 1991 there were (1400) 

paper dealing with fuzzy systems (Rajagopalan, Washington, Rizzoni & 

Guezennec, 2003). 

Later many authors have used fuzzy systems in different fields of Science; 

for example R. Sambuc (Sambuc, 1975) in Medical diagnosis in thyroidian 

pathology, M. B. Gorzalczany (Gorzalczany, 1987) in approximate reasoning, I. 

B. Turksen in Interval-valued logic, etc ..., these works and others show the 

importance of these sets (Bustince & Burillo, 1995). 

Fuzzy logic can be used in  Automobile and other vehicle subsystems, such 

as ABS, Air conditioning, Cameras, Digital image processing, Rice cookers, 

  

http://en.wikipedia.org/wiki/Anti-lock_braking_system
http://en.wikipedia.org/wiki/Air_conditioning
http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Rice_cooker
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 Dishwashers , Elevators, Refrigerators,Washing machines (which sense 

load size and detergent concentration and adjust their wash cycles accordingly) 

and other home appliances, (Wikipedia, Ret. 22 February 2007), Agriculture, GIS 

(Foley & Petry, 2000), Image Processing, Machine Learning, Machine Vision, 

Medicine, Model Validation, OCR, Fuzzy Control and Fuzzy Robots ( Fujisawa et 

al, 1993; Saffiotti, Ruspini & Kurt,1993; Silva, 1995; Magdalena & 

Monasterio,1993), Fuzzy Logic Control and Adaptive Fuzzy Logic Control 

(AFLC) (e.g., BOLLOJU, 1995; Postlethwaite, 1994), Industrial Dryer (Bremner & 

Postlethwaite, 1995), Coke Oven (Tobi & Hanatusa, 1992), Steam Generator 

(Kuan, Lin & Hsu, 1992), Sludge Plant (Yu &Kandel, 1990), Oil Processing 

(Aliyev &Tserkovnyy, 1990), Liquid Level (Graham & Newell,1988), Nuclear 

Engineering (Ruan, 1995), Shape Recognition, Telecommunications, etc ...  

Unlike two-valued Boolean logic, fuzzy logic is multi-valued. It deals 

with degrees of membership and degrees of truth. Fuzzy logic uses the 

continuum of logical values between 0 (completely false) and 1 

(completely true). Instead of just black and white, it employs the spectrum 

of colours, accepting that things can be partly true and partly false at the 

same time. Classical binary logic now can be considered as a special case 

of multi-valued fuzzy logic (Negnevitsky, 2002). 

1.1.4 Expert System, and Fuzzy Expert System 
 
Fuzzy Logic is related to Expert system as an effective Expert systems tool, 

where Expert system can be defined as: a computer program capable of 

performing at the level of a human expert in a narrow domain.Unlike 

conventional programs, expert systems can deal with incomplete and  

  

http://en.wikipedia.org/wiki/Dishwasher
http://en.wikipedia.org/wiki/Elevator
http://en.wikipedia.org/wiki/Refrigerator
http://en.wikipedia.org/wiki/Washing_machine
http://en.wikipedia.org/wiki/Detergent
http://en.wikipedia.org/wiki/Home_appliance
http://jds.fass.org/cgi/reprint/84/2/400.pdf
http://www.isprs.org/istanbul2004/comm6/papers/685.pdf
http://web.archive.org/web/20050425024310/http:/www.medialab.ntua.gr/medialab/Papers2003/2003-8/8.pdf
http://www.cs.wayne.edu/~mdong/papers/paper_fuzzytree.pdf
http://udel.edu/~ebenson/Journal_Articles/Benson_ASAE_2000_Adaptive_Edge_Detection.pdf
http://www3.sympatico.ca/alawnicz/PAGE0212.PDF
http://agron.scijournals.org/cgi/content/full/94/6/1222
http://eprint.uq.edu.au/archive/00000625/02/paper13.pdf
http://homepages.cae.wisc.edu/~ningyue/fuzzy.pdf
http://www.ensc.sfu.ca/~ljilja/ENSC833/Projects/chen/presentation.pdf


www.manaraa.com

 

6 

 

 uncertain data and permit inexact reasoning. However, like their 

human counterparts, expert systems can make mistakes when 

information is incomplete or fuzzy. Fuzzy Expert System is a collection of 

fuzzy rules and membership functions that are used to reason about data, 

by using fuzzy logic instead of Boolean logic.(Negnevitsky, 2002). 

Fuzzy logic is an excellent heuristic method to translate Experts’ knowledge 

and rules into a computer program (Zhou & Mouftah, 2004). Fuzzy logic reflects 

how people think. It attempts to model our sense of words, our decision 

making and our common sense (Negnevitsky, 2002). 

Fuzzy systems have the attribute of expressing knowledge in the form of 

linguistic rules. They offer a possibility to implement expert human knowledge 

and experience (Godjevac, 1995). 

1.1.5 Search as a Problem-Solving Process 
 
Search is a necessity to determine solutions to an enormous range of 

problems (Coppin, 2004) P.72, and the process of search is fundamental to 

the problem-solving process, where the problem can then be solved by 

using the rules, in combination with an appropriate control strategy, to move 

through the problem space until a path from an initial state to a goal state 

is found (Rich & Knight, 2000). 

In order to solve many hard problems efficiently; it is often necessary to 

compromise the requirements of mobility and systematicity and to construct a 

control structure that is no longer guaranteed to find the best answer but that 

will almost always find a very good answer. Thus we introduce the idea of a 

heuristic (Rich & Knight, 2000). 

  



www.manaraa.com

 

7 

 

1.1.6 Heuristic Search Definition  
 
The word heuristic comes from the Greek word heuriskein, meaning "to 

discover," which is also the origin of eureka, derived from Archimedes' reputed 

exclamation, heurika (for "I have found"), uttered when he had discovered a 

method for determining the purity of gold (Rich & Knight, 2000). 

A heuristic is a technique that improves the efficiency of a search process, 

possibly by sacrificing claims of completeness. Heuristics are like tour guides. 

They are good to the extent that they point in generally interesting directions; 

they are bad to the extent that they may miss points of interest to particular 

individuals. But, on the average, they improve the quality of the paths that are 

explored. Using good heuristics, we can hope to get good (though possibly no 

optimal) solutions to hard problems, such as the traveling salesman, in less 

than exponential time (Rich & Knight, 2000). 

The purpose of a heuristic function is to guide the search process in the 

most profitable direction by suggesting which path to follow first when more 

than one path is available: The more accurately the heuristic function 

estimates the true merits of each node in the search tree (or graph), the more 

direct the solution process. In the extreme, the heuristic function would be so 

good that essentially no search would be required. The system would move 

directly to a solution (Rich & Knight, 2000). 

Humans use intelligent search: a chess player considers a number of 

possible moves, a doctor examines several possible diagnoses, and a 

computer scientist entertains different designs before beginning to write code. 

Humans do not use exhaustive search: the chess player examines only moves 
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 that experience has shown to be effective; the doctor does not require 

tests that are not somehow indicated by the symptoms at hand. Human 

problem solving seems to be based on judgmental rules that guide search to 

those portions of the state space that seem most "promising" (Luger, 2005). 

1.1.7 Types of Artificial Intelligence Searching Techniques  
 
Search techniques (also called Search strategies, Control strategies, Search 

procedures, Search methodologies, or Search methods) are used to solve 

problems in Artificial Intelligence according to the state space representation of a 

problem (Bigus & Bigus, 2001), where search algorithms must keep track of the 

paths from a start to a goal node, because these paths contain the series of 

operations that lead to the problem solution (Luger, 2005). 

There are many Search Methodologies in Artificial Intelligence. Search 

Strategies may be classified mainly as Blind, or Heuristics search (Coppin, 

2004). 

Blind Search technique (also called Exhaustive, Brute - Force, or Uninformed 

Search) includes search concepts like: Generate and Test, Depth-First Search, 

Breadth-First Search, and Depth-First Iterative Deepening (Coppin, 2004). 

Heuristics search technique (also called informed, more informed, and more 

intelligent search) includes search concepts like: Hill climbing, Best-First Search, 

Beam Search, and Optimal Paths (Branch-&-bound, A*, and Greedy Search) 

(Coppin, 2004). 
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1.1.7.1 Blind Artificial Intelligence Searching techniques  
 
An exhaustive search looks at objective function values at every point in the 

search space, one at a time. They are usually discounted due to lack of 

efficiency (Clay, Crispin & Crossley, 2000). 

The simplest approach to search is called Generate and Test. This simply 

involves generating each node in the search space and testing it to see if it is a 

goal node. If it is, the search has succeeded and need not carry on. Otherwise, 

the procedure moves on to the next node (Coppin, 2004). It is also known as 

the British Museum algorithm, a reference to a method for finding an object in 

the British Museum by wandering randomly. Or, as another story goes if 

sufficient number of monkeys were placed in front of a set of' typewriters and 

left alone along enough, then they would eventually produce all of the works 

of' Shakespeare (Rich & Knight, 2000).  

Three basic search strategies that systematically explore a state space are 

depth first, breadth first, and iterative deepening (Bratko, 1998).  

Depth-first search and breadth-first search are the best-known and widest-

used search methods (Coppin, 2004). 

Depth-first search (DFS) is so called because it follows each path to its 

greatest depth before moving on to the next path. Depth-first search is often 

used by computers for search problems such as locating files on a disk, or by 

search engines for spidering the Internet (Coppin, 2004), and in all sorts of 

programs, ranging from those that do robot path planning to those that provide 
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 natural-language access to database information (Winston, 2000). 

Breadth-first search (BFS), in contrast, explores the space in a level-by-

level fashion. Only when there are no more states to be explored at a given level 

does the algorithm move on to the next level (Luger, 2005). 

The Depth-First Iterative Deepening (DFID) algorithm involves 

repeatedly carrying out depth-first searches on the tree, starting with a depth-

first search limited-to a depth of one, then a depth-first search of depth two, and 

so on, until a goal node is found (Coppin, 2004), so it combines the desirable 

properties of depth-first and breadth-first search (Bratko,2001). 

1.1.7.2 Heuristic Artificial Intelligence Searching techniques  
 
Heuristic search (HS) is one of the older fields in artificial intelligence. 

Nilsson & Pearl (Nilsson, 1971; Pearl, 1984) wrote the classic introductions to the 

field (Schaeffer & Plant, 2000). George Polya defines heuristic as "the study of the 

methods and rules of discovery and invention" (Polya 1945). 

Brute-force search algorithms blindly search the state space, while 

heuristic search algorithms use feedback or information about the problem to 

direct the search (Bigus & Bigus, 2001). 

The simplest way to implement heuristic search is through a procedure called 

Hill-climbing (Pearl, 1984). Hill-climbing (HC) strategies expand the current state 

of the search and evaluate its children. The best child is selected for further 

expansion: neither its siblings nor its parent are retained. Hill-climbing is named for 

the strategy that might be used by an eager, but blind mountain climber: go uphill  
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along the steepest possible path until you can go no farther up. Because it 

keeps no history, the algorithm cannot recover from failures of its strategy (Luger, 

2005). 

Steepest ascent hill climbing is similar to hill climbing, except that 

rather than moving to the first position you find that is higher than the current 

position, you always check around you in all four directions and choose the 

position that is highest. (Coppin, 2004) P.99. 

Simulated annealing is a variation of hill climbing in which, at the 

beginning of the process, some downhill moves may be made. The idea is 

to do enough exploration of the whole space early on so that the final 

solution is relatively insensitive to the starting state. Simulated annealing 

(Kirkpatrick et al, 1983) as a computational process is patterned after the 

physical process of annealing, in which physical substances such as metals 

are melted (i.e., raised to high energy levels) and then gradually cooled until 

some solid state is reached (Rich & Knight,2000) . 

Best-first search (BFS) is a systematic control strategy combining 

the strengths of breadth-first and depth-first search into one algorithm. 

The main difference between best-first search and the brute-force search 

techniques is that we make use of an evaluation or heuristic function to order 

the Search Node objects on the queue. In this way, we choose the Search 

Node that appears to be best before any others, regardless of their position in 

the tree or graph (Bigus & Bigus, 2001). 
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Beam Search (BS) is a form of breadth-first search that employs a 

heuristic, as seen with hill climbing and best-first search. Beam search works 

using a threshold so that only the best few paths are followed downward at 

each level. It has the disadvantage of not exhaustively searching the entire tree 

and so may fail to ever find a goal node (Coppin, 2004) P.105. 

1.1.7.3 Optimal Artificial Intelligence Searching techniques  
 
Several methods exist that do identify the optimal path through a search 

tree. The optimal path is the one that has the lowest cost or involves traveling the 

shortest distance from start to goal node. The techniques described previously 

may find the optimal path by accident, but none of them are guaranteed to 

find it. The simplest method for identifying the optimal path is called the British 

Museum procedure (Coppin, 2004). 

The following more sophisticated techniques for identifying optimal paths are 

outlined in this introduction: Branch and Bound, A*, and Greedy search. 

Several techniques can reduce the search complexity. One is called 

Branch and Bound (B&B) (Uniform cost search) (Horowitz and Sahni 1978). 

Branch and bound generates paths one at a time, keeping track of the best circuit 

found so far. This value is used as a bound on future candidates. As paths are 

constructed one node at a time, the algorithm examines each partially 

completed path. If the algorithm determines that the best possible extension 

to a path, the branch, will have greater cost than the bound, it eliminates that 

partial path and all of its possible extensions. This reduces search considerably 

but still leaves an exponential number of paths (Luger, 2005; Kruse et al, 2000). 
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Branch and Bound strategy is applied in order to find optimal or near optimal 

solutions for most problems in high-level synthesis (HLS) (Black, 2005). 

One of the most famous search algorithms used in AI is the A* search 

algorithm, which combines the greedy search algorithm for efficiency with the 

uniform-cost search for optimality and completeness (Bigus & Bigus, 2001). 

Greedy search is a variation of the A* algorithm, where g(node) is set to 

zero, so that only h(node) is used to evaluate suitable paths. In this way, the 

algorithm always selects the path that has the lowest heuristic value or estimated 

distance (or cost) to the goal. Greedy search is an example of a best-first strategy 

(Coppin, 2004). 

There are many other different Search techniques used to solve problems in 

AI like: Exchanging Heuristics, Iterated local Search, Tabu Search, Using Ant Colony 

Optimization, Using Genetic Algorithms for Search, Real-time A*, Iterative-Deepening 

A*, Agendas, Parallel Search, Bidirectional Search, and Nondeterministic Search 

(Coppin, 2004;Rich & Knight,2000). 

1.1.8 Previous Works of Fuzzy Shortest Path Problem in 
Networks 

 
Many literatures about the fuzzy shortest path in networks can be found, 

e.g., (Okada & Soper, 2000), (Dubois & Prade, 1980). Most of them are related 

to the fuzzy shortest path problem in networks. Dubios and Prade (Dubois & 

Prade, 1980) first introduced the fuzzy shortest-path problem in 1980. The major 

drawback of this fuzzy shortest-path problem is the lack of interpretation, where 

they did not develop approach to determine the shortest path (Yao & Lin, 2003). 
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 Klein (Klein, 1991) proposed a hybrid multi-criteria algorithm based on 

fuzzy dynamic programming (DP) that specified each arch length within an 

integer value from one to a fixed number, nevertheless, the proposed approach 

did not provide an extension to the crisp counterpart.. In (Okada & Soper, 2000), 

Okada and Soper proposed a fuzzy algorithm, which was based on multiple 

labeling methods, to offer non-dominated paths to a decision maker(Lin & Chern, 

1994; Hansen, Beckmann & Kunzi 1980). Ma and Chen (Ma & Chen, 2005) 

proposed the on-line fuzzy shortest path problem when the decision-making is 

under the condition of without knowing the on-line releasing congestion points, 

employing the Overall Existence Ranking Index (OERI) to rank the paths. 

Yao and Lin (Yao & Lin, 2003) presents two new types of fuzzy shortest-

path network problems combining statistics with fuzzy sets and a signed distance 

ranking. Mares and Horak (Mares & Horak, 2003) proposed that the uncertainty 

connected with the input data of a network can be described and investigated by 

means of fuzzy sets and fuzzy quantities theory. Takahashi and Yamakami 

(Takahashi & Yamakami, 2005) proposed a modified Okada's algorithm (Okada, 

2001), using some properties observed by other authors, they also proposed a 

genetic algorithm technique to seek an approximated solution for large scale 

problems. 

Okada (Okada, 2001) proposed his new algorithm by taking interaction 

among paths into consideration. The degree of possibility for each arc on a 

network "ill posed" is obtained by this algorithm. Moazeni (Moazeni, 2005) 

proposed a different algorithm which takes advantage of the multiple labeling  
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method and Dijkstra's shortest path algorithm. 

Kruse et al (Kruse et al, 2000) proposed a fast estimation technique, which 

can be applied in high-level synthesis (HLS) to reduce the power consumption in 

data path components, so they applied branch and bound strategy to find optimal 

or near optimal solutions for this problem. 

 

All of the previous mentioned works are about the fuzzy shortest path 

problem in networks and related to the use of Dijikstra’s and Okada’s algorithm 

in networks as a network’s searching techniques, also most of them did not 

develop an exact approach to determine the shortest path. 

To the best of our knowledge, no other research has been carried out where 

fuzzy underestimates is applied with “Branch and Bound” algorithm, or A* 

algorithm which are an Artificial Intelligence Search Techniques or an Artificial 

Intelligence Problem-Solving Techniques. 

1.2 Statement of the Problem 
 
The existing Branch & Bound augmented by underestimate and A* 

searching techniques are techniques that work well on precise data, but not on 

imprecise data, whereas data available are not always crisp in real life. 

Fuzzy sets in knowledge representation have advantages over the 

traditional logic, since it is, basically, a theory of graded concepts in which 

values of variables are a matter of degree. In describing human behavior, 

we generally use words which are called linguistic values rather than 

numbers to characterize the value of variables as well as the relations among 
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 them. In general, most fuzzy variables can be characterized by a rating 

attribute and the governing fuzzy sets which appear in its constituents (Sun 

& Hadipriono, 1995). 

The purpose of this study is to develop new techniques which are able to 

deal with imprecise real life data type and its hidden uncertainity during a search.  

 

The objective of such work is to deal with the imprecise data involved in 

different kinds of existing searching techniques in a more efficient way. 

1.3 Goals of this Dissertation 
 
Branch and Bound search augmented by underestimate and A* searching 

technique are an effective heuristic principle guided Artificial Intelligence 

Problem-Solving Techniques.  

Heuristic principle guides the search process so as to always expand the 

node that is currently the most promising according to the heuristic estimates.  

The aim of this research is to deal with uncertainty or imprecise data in 

a more efficient way by applying fuzzy logic on booth searching techniques, 

where fuzzy logic is an appropriate tool to deal with such problems (Zadeh, 

1965; Klir & Yuan; 1995; Guangwu, 1993; Moore, 1966). 

Fuzzy systems are able to treat uncertain and imprecise information, 

where they have a capability to express knowledge in the form of linguistic 

rules.  

On the average, they improve the quality of the paths that are explored, where, 

using good fuzzy heuristics, we can hope to get good solutions to hard 
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 problems in less than exponential time, by using Branch and Bound search  

and A* searching techniques. 

1.4 Dissertation Contributions 
 
A search problem and its solution by the existing crisp methods of Branch 

and Bound and A* search have been considered in this dissertation. It is observed 

that these methods can be improved by using fuzzy theory. Consequently a new 

method of Branch & Bound  and A* searching techniques with fuzzy 

underestimation to the available Fuzzy information (using Triangular Fuzzy 

Number model) has been proposed to add Fuzzy Underestimation to the existing 

Algorithms, thus a new improved version of searching techniques under 

uncertainty has been suggested to be helpful in many real life problems of 

computer science, specially in AI field, the corresponding algorithms have been 

given, and the algorithms have been explained by examples.  

The proposed algorithms have been implemented and tested. The analysis 

and simulation results showed that Fuzzy Underestimated A* and Fuzzy 

Underestimated (Branch and Bound) search techniques have achieved better 

efficiency, time complexity, and effective branching factor than all other compared 

searching techniques. 

1.5 Dissertation Structure 
 

This dissertation is organized as follows: 

 Chapter One: Presents introduction to dissertation subject, artificial 

intelligence searching techniques, related works, fuzzy logic, expert  
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 system, problem statement, goals of the dissertation and dissertation 

contributions. 

 Chapter Two: Provides Preliminaries for Fuzzy Set Theory, and

 Artificial Intelligence Search Techniques. 

 Chapter Three: Contains Introduction for Crisp B & B, and Branch & 

Bound Search with Fuzzy Underestimation which represents the first 

dissertation work, with two applications for the proposed algorithm  

 Chapter Four: Contains Introduction for B & B with dynamic 

programming, Crisp A*, and A* Search with Fuzzy Underestimation which 

represents the second dissertation work, with two applications for the 

proposed algorithm  

 Chapter Five: Deals with the analysis of the research algorithms. It 

presents simulation for the proposed algorithms.  

 Chapter Six: Presents conclusions,   results discussion, and future 

work.  

 Appendices: Three appendices are added: the first appendix contains the 

simulation psueducode, the second contains simulation code, and the third 

appendix presents fuzzy logic information.  
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In this chapter we are to give some preliminaries on two areas :  

(i) fuzzy set theory.,   and      

(ii) Search Techniques. 

2.1 Fuzzy Set Theory 
 
Fuzzy sets (Atanassov, 1999; Baldwin, 1981; Bratko, 2001; Blue et al, 2002; 

Bustince et al, 1995; David, 1989; Dubois & Prade, 1980; 1990; Elaine, 1983; 

Klir& Yuan, 1995; Guangwu, 1993; Gaines, 1976; Gorzalczany, 1987; 

Negnevitsky, 2002; Rajagopalan et al, 2003; Rich & Knight, 2000; Zadeh, 1965; 

1968; 1973; 1975; 1978) are of importance to us in our work in this thesis. 

Actually without proper understanding of fuzzy set theory, it may not be possible 

to understand this dissertation. 

Fuzzy or multi-valued logic was introduced in the 1930s by Jan Lukasiewicz, 

a Polish logician and philosopher (Lukasiewicz, 1930). Later, in 1937, Max Black, 

a philosopher, published a paper called Vagueness: An exercise in logical 

analysis (Black, 1937).Then in 1965 Lotfi Zadeh, Professor and Head of the 

Electrical Engineering Department at the University of California at Berkeley, 

published his famous paper “Fuzzy sets”. In fact, Zadeh rediscovered fuzziness, 

identified and explored it, and promoted and fought for it (Negnevitsky, 2002). 

Zadeh (Zadeh, 1965), initiated the notion of fuzzy set theory as a 

modification of the ordinary set theory, which turned out to be of far reaching  
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implications. Vague notions can be modeled using this theory. A fuzzy set 

is a class of objects in which the transition form membership to non-membership 

is gradual rather than abrupt. Such a class is characterized by a membership 

function which assigns to an element a grade or degree of membership between 

0 and 1. Fuzzy logic is the same as "imprecise logic". This new logic for 

representing and manipulating fuzzy terms was called fuzzy logic, and Zadeh 

became the Master of fuzzy logic (Negnevitsky, 2002). 

A fuzzy set is a set with fuzzy boundaries, such as short, average or tall for 

men's height. To represent a fuzzy set in a computer, we express it as a function 

and then map the elements of the set to their degree of membership. Typical 

membership functions used in fuzzy expert systems are triangles and trapezoids 

(Negnevitsky, 2002). 

Fuzzy logic is popular. The number of papers dealing with fuzzy logic and 

its application is immense, and the success in applications is evident. In 1991 

there  were (1400) papers dealing with fuzzy systems (Rajagopalan, Washington, 

Rizzoni & Guezennec, 2003). 

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is 

approximate rather than precisely deduced from classical predicate logic. It can 

be thought of the application side of fuzzy set theory dealing with well thought out 

real world expert values for a complex problem (Klir, 1997). 

2.1.1 Crisp Sets and Fuzzy Sets 
 
A set can be described either by the list method or by the rule method. We 

know that the process by which individuals from the universal set X are 
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 determined to be either members or nonmembers of a set can be defined 

by a characteristic function or discrimination function. 

For a given set A, this function assign a value A (x)    to every   x  X    such 

that 

                         A (x)      = 1            if    x  X 

                              = 0           if    x  X 

 

Thus in the classical theory of sets, very precise bounds separate the 

elements that belong to a certain set from the elements outside the set. In other 

words, it is quite easy to determine whether an element belongs to a set or not. 

For example, if we denote the set of signalized intersections in a city by A, we 

conclude that every intersection under observation belongs to set A if it has a 

signal. Element x’s membership in set A is described in the classic set theory by 

the membership function A(x), as follows: 
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1,  if and only if  x is member of A 

A(x)  =          

          0,  if and only if  x is not member of A          

 

It is clear form Figure (2.1) that A(x) =1,    A(y) =1,    and A (z) =0. 

Many sets encountered in reality do not have precisely defined bounds that 

separate the elements in the set from those outside the set. Thus, it might be said 

that waiting time of a vehicle at a certain signal is “long”. If we denote by A the 

set of “long waiting time at a signal,” the question logically arises as to the bounds 

of such a defined set. In other words, we must establish which elements belong 

to this set. Does a waiting time of 25 seconds belong to this set? What about 15 

seconds or 90 seconds?  

The air traffic between two cities can be described as having “high flight 

frequency.” Do flight frequencies of five flights a day, eight flights a day, three 

flights a day belongs to “high flight frequency” category?  

  

U 

Figure 2.1:   Set A and elements x, y and z of U 
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Travel time between origin and destination is usually subjectively estimated 

as “short,” “not too long”, “long”, “medium”, “about twenty minutes”, “around half 

an hour”, and so on. Now, does a travel time of 40 minutes, 25 minutes, or 8 

minutes belong to the set called “travel time of around half an hour”? We 

intuitively know that a travel time of 25 minutes belongs to the set called “travel 

time of around half an hour” “more” or “stronger” than a travel time of 8 minutes. 

In other words, there is more truth in the statement that travel time of 25 minutes 

is “travel time of around half an hour” than in the statement that travels time of 8 

minutes is “travel time of around half an hour”.  

This characteristic function can be generalized such that the values assigned to 

the elements of the universal set fall within a specified range and indicate the 

membership grade of these elements in the set in question. Such a function is 

called membership function and the set defined by it a fuzzy set. 

The membership function for fuzzy sets can take any value form the closed 

interval [0,1]. Fuzzy set A is defined as the set of ordered pairs  

A = {x, A(x)}, (1)  

The following holds for the functional values of the membership function μA (x) 

 (2) 
 

Where A(x) is the grade of membership of element x in set A. The greater A(x), 

the greater the truth of the statement that element x belongs to set A. 
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Let us denote the crisp set by  X   =    {x1, x2……...., xn}      the   finite discrete 

set of elements xi,   i = 1, 2, …., n.          Set  X  can also be shown in the form: 

 

 

where the sign + denotes the union of the elements. Set X is referred to as the 

“universe of discourse”, and it may contain either discrete or continuous values 

(elements). 

Similarly, fuzzy set A   defined over a set X is most often shown in the form: 

 

A  fuzzy set A can also be defined over a set X  in any of the following forms :-    

(i)       A   =   {  A(x1)/x1,  A(x2)/x2,   A(x3)/x3, ……….,  A(xn)/xn }. (5) 

(ii)      A   =     {  (x1, A(x1)),  (x2, A(x2)),  (x3, A(x3)), ………., (xn, A(xn)) }. (6) 

(iii)      A  =    {   (x, A(x)) :   x  X }.  (7) 

(iv)     or,  sometimes just by the  membership function    A  :    X →  [0,1]. (8) 

When X is continuous and not a finite set,   fuzzy set A defined over set X  is 

expressed as: 

  

  

          A(x1)         A(x2)                       A(xn)        n  A(x1) 

A =                 +                 + …… +                   =                         (4) 

             x1                   x2                                             xn                i=1    xi 

 

)x(A              

A =                    , (9) 

        x     x 

                                                                                          n 

                    X     =         x1  +   x2  +  ……+ xn           =         xi  ,  (3) 

                                                                                                                                     i=1 
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where   the integration sign represents the union of the elements.  

Illustrative example 2-1:      

Let us consider a set X = {2, 5,9,18,21,25}, whose elements denote the 

number of vehicles waiting in line at a traffic signal. 

Set B consists of the fuzzy set “small  number of vehicles in line.” Fuzzy set 

B can be shown as: 

 

 

 

or in other form like: 

              B    =      {   (2,0.95),  (5,0.55),  (9,0.20),  (18,0.10),  (21,.05),  (25,.01)  }.   

(11) 

The grades of membership 0.95, 0.55,…, 0.01 are subjectively determined 

and indicate the “strength” of membership of individual elements in fuzzy set B. 

For example, 2 belongs to fuzzy set B with a grade of membership of 0.95, which 

comprises a “small number of vehicles in line” at the signal. 

           0.95           0.55           0.20            0.10         0.05           0.01 

B =  ------- + --------  + -------- + --------+ ------- +   -------          (10), 
             2                 5                9               18            21               25 
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2.2.Illustrative example  
Let us consider a fuzzy set A, which is defined as “travel time is 

approximately 30 minutes.” Membership function  A (t), which can subjectively 

be determined as shown below in figure (2.2):-   

 

In this case, we have subjectively estimated that travel time between the two 

points can be within the limits of 25 to 35 minutes. A travel time of 30 minutes has 

a grade of membership of 1 and belongs to the set “travel time is approximately 

30 minutes.”  All travel times within the interval of 25 to 35 minutes are also 

members of this set because their grades of membership are greater than zero.   

Travel times outside this interval have grades of membership equal to zero. 

2.1.2 Various  Operations  on  Fuzzy Sets  
 

Fuzzy sets can interact. These relations are called operations. The main 

operations of fuzzy sets are: complement, containment, intersection, and union 

(Negnevitsky, 2002).  

A (t) 

0.0 

1.0 

0.5 

0       5       10       15       20      25         30           35       40                         t [min.] 

Figure 2.2: Membership function A (t)  of  fuzzy set  A. 
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In this section we recollect some basic operations on fuzzy sets. Let A and 

B be two fuzzy sets of  X   having  membership functions  A     and   B     

respectively.  

2.1.2.1 Equality of two Fuzzy Sets 
Two fuzzy sets A and B  are  equal, and denoted as A = B,   if  and  only  if   

A (x)    =     B (x)                for all elements of set X. 

If at least one x   X   such that  A (x)  ¹ B (x) ,   then A  and B  are said to be ‘not  

equal’   and   it is denoted as A ¹ B. 

2.1.2.2  Subsets of Fuzzy Sets 
 

Fuzzy set A is a subset of the fuzzy set B, and denoted as A  B,  if  and  

only  if: 

A (x)        B (x)          for all elements x of the set X.  

In other words, A  B if for every x of X, the grade of membership in fuzzy 

set A is less than or equal to the grade of membership in fuzzy set B.  

Consider the fuzzy sets A and B, respectively, the fuzzy sets  “long travel 

time” and “very long travel time”.  The fuzzy set “very long travel time”  is a subset 

of the fuzzy set “long travel time”  since the following relation is obviously to be 

satisfied for every x:  

µB (x) ≤ µA (x) 
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Example 2-3:      

Let     X   =   {a, b, c, d}   be a universe  of which  A = {a/.9, b/.2, c/.1, d/.5}  

and   

B = {a/.6, b/.1, c/0, d/.1}  are two fuzzy sets.  

Then,  clearly  B  A.  

2.1.2.3 Complementation  
Let A be a fuzzy set of the universe X.  Then the complement of A is a fuzzy 

set denoted by  Ac  of  the  same universe X  with the membership function µAc  

given by 

µAc(x) = 1 - µA(x),         x  X. 

Clearly,   we have         (Ac)c  =   A.  

Example 2-4:      

Let   X = {a, b, c, d} be a universe, and A = {a/.2, b/.6, c/.3, d/.3} is a fuzzy set of 

X. 

  

 (x)Aµ

    
 (x)Bµ

    

0 

1 

X [min] 

Figure 2.3:   Membership functions of the fuzzy sets  A = “long travel time”   

                   and  “very long travel time”. 
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Then the complement of this fuzzy set A  is  the fuzzy set Ac  in X given by : 

Ac  =  {a/.8, b/.4, c/.7, d/.7}. 

Clearly  (Ac)c  =  {a/.2, b/.6, c/.3, d/.3}  which is the fuzzy set  A.  

2.1.2.4 The Union of Fuzzy Sets  

 
Let  A  and  B be two fuzzy sets of  X  having  membership functions  A  

and   B    respectively.  The union of  A and B, denoted by AB,  is the fuzzy set 

in X defined as the smallest fuzzy set that containing both fuzzy set A and fuzzy 

set B.  

The membership function µAB of the union AB of fuzzy sets A and B is defined 

as follows :  

µAB(x)    =    max { µA(x), µB(x) }      for every  x  of  X. 

The symbol  is often used instead of the symbol ‘max’.   The union corresponds 

to the operation “or”.   Thus we can write  µAB(x)  =  µA(x)  µB(x).  

 

  

µB(x)     
µA(x)     

0 

1 

   x  

   µ A  B (x) 

Figure 2.4: Membership functions of fuzzy sets A, B and A  B. 
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.Example  

Delays in air transportation can be due to technical reasons, meteorological 

conditions, late or non appearance of flight crews, and so on. We assume that 

out of total aircraft delays, technical reasons make “approximately 30%” of the 

reasons for delays. We also assume that meteorological conditions cause delays 

in “approximately 25%”  of the cases.  

Now we will define fuzzy sets A and B as follows:- A defines “approximately 

30% of the cause of delay”, and B defines “approximately 25% of the cause of 

delay”. The fuzzy set AB denotes “approximately 25% or approximately  30% 

of the cause of delay and refers to aircraft delays due to technical reasons or 

meteorological conditions.  The membership functions of the fuzzy set AB is 

shown below:- 

 

2.1.2.5 The Intersection of Fuzzy Sets  
 

The intersection of fuzzy sets A and B is denoted by AB and is defined as 

the largest fuzzy set of X contained in both fuzzy sets A and B. The intersection 

  

0 

1 

0 

10 5 15 20 25 30 35 40 45 [%] 

µ 

 

Figure 2.5: Membership functions of the fuzzy sets “approximately 25%”, “approximately 31%” 

and “approximately 25% or approximately 31%”  of  the cause of delay. 
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 corresponds to the operation “and”.  

Membership function µAB(x) of the intersection AB is defined as follows:  

µAB(x) = min { µA(x), µB(x) }}      for every  x  of  X. 

The symbol  is often used instead of the symbol ‘min’. Thus we can write: 

µAB(x)   =  µA(x)  µB(x).  

Example 2-6:      

Suppose that the visibility on airport runways and the height of the cloud 

base are measured in metres. Visibility can be “good,” “medium,” or “poor.” The 

cloud base can be “low” or “high’. 

Consider the fuzzy sets A and B defined as follows:  A defines “poor visibility on 

airport runways,” and  B defines “high cloud base”.  Then the fuzzy set A  B 

denotes “poor visibility on airport runways and high cloud base”. 

 

µ(x) 

 

µA(x)     
µB(x)     

0 

1 

   x  

   µ A  B (x) 

Figure 2.6     Membership functions of fuzzy sets A, B and A  B. 
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2.1.3   Fuzzy Numbers  
The concept of fuzzy numbers have been very successfully used in many 

areas like fuzzy linear programming, fuzzy optimization problems, fuzzy 

databases, fuzzy algebras etc. to list a few only. 

To study the fuzzy numbers, we need to have a prior knowledge of convex 

fuzzy sets and normalized fuzzy sets. 

2.1.3.1   Convex Fuzzy set 
A fuzzy set A  of the universe  X   is called to be convex   if  

A (x1 + (1  )x2 )    ³      min   ( A (x1),  A (x2) ),        

where     x1, x2  X,       [0,1]. 

2.1.3.2   Normalized Fuzzy set 

Let A be a fuzzy set of the universe X.    If    sup A (x) =  1,     then the 

fuzzy  set A is called to be a normal fuzzy set.    

2.1.3.3     Fuzzy Number 

A fuzzy number M is a convex normalized fuzzy set M of the real line R 

whose membership function is at least segmentally continuous and has the 

functional value μA(x) = 1 at precisely one element;  such that: 

(i) It exists exactly one x0  R  with   M (x0) = 1 

                 (x0  is called the mean value of  M ).  

(ii) M (x) is piecewise continuous. 

There are two types of fuzzy numbers popularly used in different domains 

of applications.  These are :- 

  

http://en.wikipedia.org/wiki/Continuous_function
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(i) Triangular fuzzy number (TFN). 

(ii) Trapezoidal fuzzy number. 

An example of a triangular fuzzy number “approximately 30”  can be shown 

in figure (2.2). 

For computational efficiency, trapezoidal membership functions are often  

used. Figure (2.7) shows such a fuzzy set, which is called ‘approximately 5’ and 

which would normally be defined as quadruple {3,  4, 6, 7}. It is actually a fuzzy 

interval. 

 

2.1.3.4    Positive Fuzzy Number     
A fuzzy number M is called positive (negative)    if   its  membership function  

is such that       M (x)   =   0,            x     0     (x  0). 

1        1         2         3            4             5            6            7         8             9           11           X 

1.0 

(x) 

Figure 2.7: Trapezoidal fuzzy number {3, 4, 6, 7} 
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Example 2-7:      

The following fuzzy sets are fuzzy numbers:  

(1)   ‘Approximately 5’     =    {  (3,.2), (4,.6) (5, 1), (6,.7), (7,.1)  } 

(2)   ‘Approximately 12’   =    {  (10,.3), (11,.8), (12,1), (13,.4), (14,.2)  } 

Clearly, {(6,.4), (7, 1), (8,1), (9,.2)}, is not a fuzzy number because;  (7) and  

(8) both are equal to 1, and thus it is not a convex normalized fuzzy set. 

The algebraic operations with crisp numbers are very common is practice.  

In order to use fuzzy sets in applications, we will have to deal with fuzzy numbers 

and  the extension principle is one way to extend algebraic operations from crisp 

to fuzzy numbers. 

2.1.3.5      Definition  
A fuzzy number  M   is called to be of  LR - type if   reference functions L  

(for left),    R  (for right),    and    scalars    0,     0    with  

 

where ‘m’  is called the mean value of M.   Here ‘m’ is a real number and  ,    

are known as the  left  and  right  spreads   respectively. 

We represent    M    as    (m, ,  ) LR , .where Fig 2.18  shows a LR-type 

fuzzy number.  

 

 

mx 

mx 
L 

R 

M (x )  = 

for       x  ³  m. 

for       x    m. 
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2.1.3.6   α-cut of a vague set. 
 The α-cut of the Fuzzy set A is a crisp subset denoted by the symbol Aα of the 

set X, where:-   

             Aα   =   { x :  x X,   (x) ≥ α }. 
 

Example 2-8:      

Suppose that the Fuzzy set A=   {  (x1,0.6), (x2,0.3) (x3,0.8), (x4,0.2  } 

If the decision maker provided, α  =  0.4  = threshold value,  

Then    Aα   =   {  x1,  x3  }. 

But if the decision maker provided, α  =  0.25 

Then    Aα   =   {  x1,  x2,  x3  }. 

2.1.4  Hedge Definition 
 

A qualifier of a fuzzy set used to modify its shape. Hedges include adverbs 

such as `very', 'somewhat', `quite', `more or less' and `slightly'. They perform 

mathematical operations of concentration by reducing the degree of membership 

of fuzzy elements (e.g. very tall men), dilation by increasing the degree of 

  

1.0 

 (x) 

0                                             5                                  11                                  X  

Fig 2.8: LR-type fuzzy number. 



www.manaraa.com

 

36 

 

 membership (e.g. more or less tall men) and intensification by increasing 

the degree of membership above 0.5 and decreasing those below 0.5 (e.g. 

indeed tall men). 

2.1.5  Fuzzy rule Definition 
 

A conditional statement in the form: IF x is A THEN y is B, where x and y 

are linguistic variables, and A and B are linguistic values determined by fuzzy 

sets. 

2.1.6  Fuzzy inference Definition 
 

The process of reasoning based on fuzzy logic. Fuzzy inference includes 

four steps: fuzzification of the input variables, rule evaluation, aggregation of the 

rule outputs, and defuzzification. 

2.1.6.1 Fuzzification Definition 
 

The first step in fuzzy inference; the process of mapping crisp (numerical) 

inputs into degrees to which these inputs belong to the respective fuzzy sets. 

 
2.1.6.2 Defuzzification Definition 
 

The last step in fuzzy inference; the process of converting a combined 

output of fuzzy rules into a crisp (numerical) value. The input for the 

defuzzification process is the aggregate set and the output is a single number. 
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The process of search is fundamental to the problem-solving process 

in Artificial Intelligence, where the problem can then be solved by using the 

rules, in combination with an appropriate control strategy, to move through 

the problem space until a path from an initial state to a goal state is found 

(Rich & Knight,2000). 

Search techniques are used to solve problems in Artificial Intelligence 

according to the state space representation of a problem (Bigus & Bigus, 

2001) , where  Search algorithms must keep track of the paths from a start 

to a goal node, because these paths contain the series of operations that 

lead to the problem solution (Luger, 2005). 

State space is a formalism for representing problems. State space is a 

directed graph whose nodes correspond to problem situations and arcs to 

possible moves. A particular problem is defined by a start node and a goal 

condition. A solution of the problem then corresponds to a path in the graph. 

Thus problem solving is reduced to searching for a path in a graph (Bratko, 

1998). 

There are two main approaches to searching a search tree, which roughly 

correspond to the top-down and bottom-up approaches. Data-driven search 

starts from an initial state and uses actions that are allowed to move forward 

until a goal is reached. This approach is also known as forward chaining. 

Alternatively, search can start at the goal and work back toward a start state, by 
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 seeing what moves could have led to the goal state. This is goal-driven 

search, also known as backward chaining (Coppin, 2004). 

Very briefly, if the solution found is to be applied or used on a regular 

basis then it is important that this solution be as efficient as possible, even 

if it means sacrificing search time. In other words solution cost should be 

minimal at the expense of a high search cost. On the other hand, if the 

problem is a one-off then optimizing the solution cost may no longer be a 

priority, instead optimizing the search cost may be the number one concern. 

Search Strategies may be classified mainly as Blind, Heuristics, and 

Optimal Paths search (Coppin, 2004). 

Blind or Exhaustive Search techniques include search concepts like: 

Generate and Test, Depth-First Search, Breadth-First Search, and Depth-First 

Iterative Deepening  

Heuristics or informed search techniques include search concepts like: Hill 

climbing, Best-First Search , Beam Search, and Optimal Paths search techniques 

include search concepts like: Branch-and-bound, Discrete Dynamic 

Programming, and A*. 

Assumptions 

We will consider the following two assumptions in our work:  

1- For our work, when we refer to "search," we are talking about data-driven 

search, where there are two directions in which to search: search 

forward through the state space, or backward from the goal (Doyle, 

Dec 5.,2005), but we are to use Directed Acyclic Graph (DAG) because 

it is impossible to "go back up" the structure once a state has been 
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 reached (Coppin, 2004; Luger, 2005). 

2- We need to be careful to remove repetitions of paths, or loops, because 

those should add redundancy to the graph and make searching it 

inefficient, where general graph search algorithms must detect and 

eliminate loops from potential solution paths, whereas tree searches 

may gain efficiency by eliminating this test and its overhead (Coppin, 

2004; Luger, 2005). 

In this section we are to explain how to find paths through nets, thus solving 

search problems. In particular, we will explain in details Depth-First Search, and 

Breadth-First Search (which are the best-known and widest-used search 

methods) (Coppin, 2004), with their algorithms and examples involving map 

traversal. We will also explain briefly Hill Clamping Search, and British Museum 

Procedure. Finally, we will explain several important properties that search 

methods should have in order to be most useful. 

2-2-1  Blind Methods  
In order to explain many techniques, one can look at the problem of route 

planning, in particular planning a route from start node (S) to goal node (G) in the 

following map. 

We begin with an example;  
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Example 2.1: 

Suppose that Mr. X is trying to find some path from one city to another city 

using a highway map such as the one shown in Figure (2.9). The starting point in 

the city, which might be called (start node), and ending point in the city, which 

might be called (goal node).  

 

 

 

 

 

 

 

 

 
 

 

If Mr. X needs to go to the goal city often, then finding a good path is worth  

a lot of search time. On the other hand, if Mr. X needs to make the trip only once, 

and if it is hard to find any path then he may be content as soon as he finds any 

path, even though he could find a better path with more work. 

The most obvious way to find a solution is to look at all possible paths. Of 

course, one would discard paths that revisit any particular city, so that he or she 

cannot get stuck in a loop– such as S-A-D-S-A-D-S-A-D-… 

With looping paths eliminated, one can arrange all possible paths from the  

  

31 

48 

57 

18 

10 65 

22 

32 

S 

A B C 

D E G 

32 

Fig 2.9: A basic search problem, where a path is to be found from the start node, S, to the goal node, G . 
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start node S in a search tree (a special kind of semantic-tree in which each 

node denotes a path). 

Figure (2.10) shows a search tree that consists of nodes denoting the 

possible paths that lead outward from the start node S of the net shown in figure 

(2.9).  

 

There are two important costs to consider with respect to search-based 

problem solving: 

1. Search Cost – The cost of finding a solution (computation cost when finding 

a path) 

2. Solution Costs – The cost of using this solution (travel cost expended when 

traversing the path).1 

  

                                                 
1 This cost might be a representation of the miles necessary in car travel or cost of an air flight between 

the two cities 
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Denotes the path S-A-B-C-G 

Denotes the path S-D 

Figure: 2.10: A search tree made from a net. Each node denotes a path. Each child node denotes a path 

that is a one-step extension of the path denoted by its parent. Nets can be converted into search trees 

by tracing out all possible paths until searcher cannot extend any of them without creating a loop. 
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The basic idea in nearly all of the search techniques is to maintain and 

extend a set of partial solution sequences, different search techniques offer 

different guarantees with regards to both of these costs, Figure (2.11) shows the 

basic search techniques classification. 

 

 

In general the longer one spends searching, the better resulting solution; 

that is, high search costs usually mean low solution costs, depending on the type 

of problem and the way in which the solution will be used. Search may or may 

not be a good idea, and more importantly one particular type of search may be 

preferred over another. 

  

Search 

Blind Search 
Heuristic Search Optimal methods 

Depth-first 

Breadth-First 

Beam 
Search 

Hill 
Climbing 

Branch & 
Bound 

A* 

Figure: 2.11 Basic search techniques classification. 
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Very briefly, if the solution found is to be applied or used on a regular basis 

then it is important that this solution be as efficient as possible, even if it means 

higher search time. In other words solution cost should be minimal at the expense 

of a high search cost. 

On the other hand, if the problem is a one-off then optimizing the solution 

cost may no longer be a priority, instead optimizing the search cost may be the 

number one concern. 

Note that, although each node in a search tree denotes a path, there is no 

room in the diagram to write out each path at each node. Accordingly, each node 

is labeled with only the terminal node of the path it denotes. Each (child) denotes 

a path that is a one-city extension of the path denoted by its (parent).  

The node with no parent is called the (root node). The nodes at the bottom, 

the ones with no children, are called (leaf nodes). One node is the (ancestor) of 

another, a (descendant), if there is a chain of one or more branches from the 

ancestor to the descendant. 

If a node has b children, it is said to have a (branching factor) of b. If the 

number of children is always b for every nonleaf node, then the tree is said to 

have a branching factor of b.  

In Figure(2.10), the root node denotes the path that begins and ends at the 

start node S. The child of the root node labeled A denotes the path S-A. 

Each path, such as S-A, that does not reach the goal is called a (partial path). 

Each path that does reach the goal is called a (complete path), and the 

corresponding node is called a (goal node). Determining the children of a node 

is called (expanding) the node. Nodes are said to be (open) until they are  
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expanded, whereupon they become (closed).  

Note that search procedures start out with no knowledge of the ultimate size 

or shape of the complete search tree. All they know is where to start and what 

the goal is. Each must expand open nodes, starting with the root node until it 

discovers a node that corresponds to an acceptable path. 

The total number of paths in a tree with branching factor b and depth d is 

bd. Thus, the number of paths is said to explode exponentially as the depth of the 

search tree increases.  

Accordingly, searcher always tries to deploy a search method that is likely 

to develop the smallest number of paths.  

 

2.2.1.1   Depth-First Search (DFS) 
 

Given that one path is as good as any other, one simple way to find a path 

is to pick one of the children at every node visited, and to work forward from that 

child. Other alternatives at the same level are ignored completely, as long as 

there is hope of reaching the goal using the original choice. This strategy is the 

essence of depth-first search.  

Using a convention that the alternatives are tried in left-to-right order, the 

first thing to do is to dash headlong to the bottom of the tree along the leftmost 

branches, as shown in Figure (2.12).  

\But because a headlong dash leads to leaf node C, without encountering C, the 

next step is to back up to the nearest ancestor node that has an unexplored 

alternative. The nearest such node is B. The remaining alternative at B is better, 

bringing eventual success through E in spite of another dead end at D. Figure 

(2.12) shows the nodes encountered.   
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If the path through E had not worked, then the procedure would move still 

farther back up the tree, seeking another viable decision point from which to move 

forward. On reaching A, the procedure would go down again, reaching the goal 

through D.  

Having learned about depth-first search by way of an example, you can see 

that the procedure, is as follows: 

_______________________________________________________________
___ 

To conduct a depth-first search,  

1- Form a one-element queue consisting of a zero-length path that contains only 

the root node. 

2- Until the first path in the queue terminates at the goal node or the queue is 

empty,  

2.1- Remove the first path from the queue; create new paths by extending 

the first path to all the neighbors of the terminal node.  

2.2- Reject all new paths with loops.  

S 

A 

B D 

C E 

D F 

G 

 

 

 

Figure 2.12: An example of depth-first search.  
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2.3- Add the new paths, if any, to the front of the queue.  

3- If the goal node is found, announce success; otherwise, announce 

failure. 

Figure (2.13) will explain the algorithm of depth-first search according to the 

previous example shown in Figure (2.12): 
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Figure: 2.13    Depth-First Search algorithm explanation  
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Depth-first search is usually simpler to implement than breadth-first search, 

and it usually requires less memory usage because it only needs to store 

information about the path it is currently exploring, whereas breadth-first search 

needs to store information about all paths that reach the current depth. This is 

one of the main reasons that depth-first search is often used by computers for 

search problems such as locating files on a disk, or by search engines for 

spidering the Internet (Coppin, 2004).  

 

2.2.1.2  Breadth -First Search (BFS) 
 

Breadth-first search cheeks all paths of a given length before moving on to 

any longer paths, where downward motion proceeds level by level, until the goal 

is reached. In Figure (2.14), breadth-first search discovers a complete path to 

node G on the third level down from the root level. 
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Figure 2.14:    An example of breadth-first search. Downward motion proceeds level by level, 

until the goal is reached. 
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A procedure for breadth-first search resembles the one for depth-first 

search, differing only in where new elements are added to the queue. 

_______________________________________________________________
______ 

To conduct a breadth-first search,  

1- Form a one-element queue consisting of a zero-length path that contains only 

the root node. 

2- Until the first path in the queue terminates at the goal node or the queue is 

empty,  

2.1- Remove the first path from the queue; create new paths by extending 

the   first path to all the neighbors of the terminal node.     

2.2- Reject all new paths with loops.  

2.3- Add the new paths, if any, to the back of the queue.  

3- If the goal node is found, announce success; otherwise, announce failure. 

_______________________________________________________________
______ 

 

Figure (2.15) will explain the algorithm of breadth -first search according to 

the previous example shown in Figure (2.14): 
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Figure 2.15: Breadth First Search algorithm explanation 
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The right choice for the appropriate searching technique depends on the 

tree, where depth-first search is a good method when one is confident that all 

partial paths either reach dead ends or become complete paths after a 

reasonable number of steps. In contrast, depth-first search is a bad method if 

there are long paths, even infinitely long paths, that neither reach dead ends nor 

become complete paths. In those situations, we need alternative search 

methods.  

Breadth-first search works even in trees that is infinitely deep or effectively 

infinitely deep. On the other hand, breadth-first search is a wasteful method when 

all paths lead to the goal node at more or less the same depth.  

Note that breath-first search is a bad method if the branching factor is large 

or infinite, because of exponential explosion. Breadth-first search is a good 

method when one is confident that the branching factor is small. One may also 

choose breadth-first search, instead of depth-first search, if the researcher is 

worried that there may be long paths, even infinitely long  paths, that neither reach 

dead ends nor become complete paths.  

In most cases the researcher is uninformed about the search problem, in 

such cases researcher cannot rule out either a large branching factor or long 

useless paths. In such situations, the researcher may want to seek a middle 

ground between depth-first search and breadth-first search. One way to seek 

such a middle ground is to choose nondeterministic search. When 

nondeterministic search is being used, one can expand an open node that is 

chosen at random. In this way, one ensures that the search algorithm will not get 
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 stuck chasing either too many branches or too many levels. 

2.2.2 . Heuristically Informed Methods  
. 

Search efficiency may improve spectacularly if there is a way to order the 

choices so that the most promising are explored earliest. In many situations, one 

can make measurements to determine a reasonable ordering. When taking the 

advantage of such measurements; those methods are called heuristically 

informed methods. 

Heuristic search is one of the older fields in artificial intelligence. Nilsson & 

Pearl (Hart et al., 1968; Hart et al., 1972) wrote the classic introductions to the 

field (Schaeffer & Plant, 2000). 

George Polya defines heuristic as "the study of the methods and rules of 

discovery and invention" (Polya, 1945). This meaning can be traced to the 

term's Greek root, the verb eurisco, which means "I discover." When 

Archimedes emerged from his famous bath clutching the golden crown, he 

shouted "Eureka!" meaning “I have found it!”. In state space search, heuristics 

are formalized as rules for choosing those branches in a state space that are most 

likely to lead to an acceptable problem solution (Luger, 2005). 

A heuristic is a technique that improves the efficiency of a search process, 

possibly by sacrificing claims of completeness. Heuristics are like tour guides. 

They are good to the extent that they point in generally interesting directions; they 

are bad to the extent that they may miss points of interest to particular individuals. 

But, on the average, they improve the quality of the paths that are explored. Using 

good heuristics, we can hope to get good (though possibly no optimal) solutions  
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to hard problems, such as the traveling salesman, in less than exponential 

time. 

The purpose of a heuristic function is to guide the search process in the 

most profitable direction by suggesting which path to follow first when more than 

one is available: The more accurately the heuristic function estimates the true 

merits of each node in the search tree (or graph), the more direct the solution 

process. In the extreme, the heuristic function would be so good that essentially 

no search would be required. The system would move directly to a solution (Rich 

& Knight, 2000). 

2.2.2.1 Hill Climbing (HC) 
 

The simplest way to implement heuristic search is through a procedure 

called hill-climbing (Pearl, 1984). 

To move through a tree of paths using hill climbing, one proceeds as he 

would in depth-first search, except that searcher orders his/her choices according 

to some heuristic measure of the remaining distance to the goal. The better the 

heuristic measure is, the better hill climbing will be relative to ordinary depth-first 

search. One can note that Hill climbing is depth-first search with a heuristic 

measurement that orders choices as nodes are expanded, where quality 

measurements turn Depth-First Search into Hill Climbing.  

Hill-climbing strategies expand the current state of the search and evaluate 

its children. The best child is selected for further expansion: neither its siblings 

nor its parent are retained. Hill-climbing is named for the strategy that might be 

used by an eager, but blind mountain climber: go uphill along the steepest 

possible path until you can go no farther up. Because it keeps no history, the 
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 algorithm cannot recover from failures of its strategy. 

From a procedural point of view, hill climbing differs from depth-first search 

in only one detail; there is an added step: Sort the new paths, if any, by the 

estimated distances between their terminal nodes and the goal. 

2.2.3 Optimal Search 
Several methods exist that do identify the optimal path through a search 

tree. The optimal path is the one that has the lowest cost or involves traveling the 

shortest distance from start to goal node. The techniques described previously 

may find the optimal path by accident, but none of them are guaranteed to find it 

(Coppin, 2004). 

Optimal Search techniques deal with search situations in which the cost of 

traversing a path is of primary importance. In this section we are to explain the 

British Museum procedure, while we will explain the more sophisticated 

techniques for identifying optimal paths like: branch and bound, discrete dynamic 

programming, and A* procedures in the next chapters.  

 

2.2.3.1 British Museum Procedure (BMP) 
 

One Procedure for finding the shortest path through a net is to find all 

possible paths and to select the best one from them. This Procedure is known as 

British Museum Procedure, where BMP looks every where. 

British Museum procedure is the simplest method for identifying the optimal 

path. This process involves examining every single path through the search tree 

and returning via the best path that was found. Because every path is examined, 

the optimal path must be found. This process is implemented as an extension of 

one of the exhaustive search techniques, such as depth-first or breadth-first 
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 search, but rather than stopping when a solution is found, the solution is 

stored and the process continues until all paths have been explored. If an 

alternative solution is found, its path is compared with the stored path, and if it 

has a lower cost, it replaces the stored path. If the breadth and depth of the tree 

are small, then there are no problems. 

Unfortunately, the size of search trees is often large, making any procedure 

for finding all possible paths extremely unpalatable. Suppose that instead of the 

number of levels being small, it is moderately large. Suppose further that the 

branching is completely uniform and that the number of alternative branches at 

each node is b. Then, in the first level, there will be b nodes. For each of these b 

nodes, there will be b more nodes in the second level, or b2. Continuing this 

analysis leads to the conclusion that the number of nodes at depth d must be bd. 

For even modest breadth and depth, the number of paths can be large. For 

example; b = 10 and d = 10 yields 10 billion paths. Fortunately, there are 

strategies that enable optimal paths to be found without all possible paths being 

found first. 

2.2.4 Properties of Search Methods 
There are several important properties that search methods should have in 

order to be most useful. In particular, we will look at the following properties 

(Coppin, 2004): 

 Complexity 

 Completeness 

 Optimality 

 Admissibility 
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Complexity 

In discussing a search method, it is useful to describe how efficient that 

method is, over time and space. 

The time complexity defines how fast an algorithm performs and 

scales(Bigus & Bigus, 2001). The time complexity of a method is related to the 

length of time that the method would take to find a goal state(Coppin, 2004).  

The space complexity describes how much memory the algorithm requires 

to perform the search(Bigus & Bigus, 2001). The space complexity is related 

to the amount of memory that the method needs to use (Coppin, 2004). 

It is normal to use Big-O notation to describe the complexity of a method. For 

example, breadth-first search has a time complexity of O(bd), where b is the 

branching factor of the tree, and d is the depth of the goal node in the tree (Coppin, 

2004). 

Completeness 

A search method is complete if it is guaranteed to find a solution  (a goal 

state) if one exists. Breadth-first search is complete, but depth-first search is 

not because it may explore a path of infinite length and never find a goal node that 

exists on another path (Bigus & Bigus, 2001; Coppin, 2004). 

Optimality 

A search algorithm is optimal if it is guaranteed to find the best solution 

from a set of possible solutions(Bigus & Bigus, 2001). In other words, it will find 

the path to a goal state that involves taking the least number of steps (Coppin, 

2004). This does not mean that the search method itself is efficient, it might take a 

great deal of time for an optimal search method to identify the optimal  
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solution, but once it has found the solution, it is guaranteed to be the best 

one. This is fine if the process of searching for a solution is less time consuming 

than actually implementing the solution. On the other hand, in some cases 

implementing the solution once it has been found is very simple, in which case it 

would be more beneficial to run a faster search method, and not worry about whether 

it found the optimal solution or not. 

Breadth-first search is an optimal search method, but depth-first search is 

not. Depth-first search returns the first solution it happens to find, which may be the 

worst solution that exists. Because breadth-first search examines all nodes at a given 

depth before moving on to the next depth, if it finds a solution, there cannot be 

another solution before it in the search tree. 

In some cases, the word optimal is used to describe an algorithm that finds a 

solution in the quickest possible time, in which case the concept of admissibility is 

used in place of optimality. An algorithm is then defined as admissible if it is 

guaranteed to find the best solution. A* is admissible when the heuristic function 

never overestimates (Doyle, Dec. 5, 2005). 

Successful search method should satisfy three properties: 

1. Completeness (must be complete): It eventually produces all possible 

solutions In other words, it must generate every possible solution; 

otherwise it might miss a suitable solution. 

 
2. non-redundant (must be nonredundant): It never proposes a solution 

more than once. In other words, it should not generate the same solution 

twice.  

http://www.cs.dartmouth.edu/~brd/Teaching/AI/Lectures/Summaries/search.html#heuristic
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3. informed (must be well informed): It uses information to limit the 

possibilities and hence the number of solutions proposed. This means that 

it should only propose suitable solutions and should not examine possible 

solutions that do not match the search space. A function h1 is more 

informed than a function h2 if for all non-goal nodes n, h2(n) > h1(n) (Doyle, 

Dec 5.,2005; Coppin, 2004). 

 

2.2.5 The effect of heuristic accuracy on performance 
One way to characterize the quality of a heuristic is the effective 

branching factor b* If the total number of nodes generated by A* for a particular 

problem is N, and the solution depth is d, then b* is the branching factor that a 

uniform tree of depth d would have in order to contain N + 1 nodes. Thus, 

N+1=1 + b* + (b*)² +….+ (b*)d  . 

For example. if A* finds a solution at depth 5 using 52 nodes:  

52+1=1 + b* + (b*)² +….+ (b*)5  . ,  

then the effective branching factor is 1.92. 

To calculate this , we can use the well known mathematical identity: 
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This enables us to write a polynomial for which b* is zero, and we can solve 

this using numerical techniques such as Newton’s method. 

The effective branching factor can vary across problems. instances, but 
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 usually it is fairly constant for sufficiently hard problems. Therefore, 

experimental measurements of b* on a small set of problems can provide a 

good guide to the heuristic's overall usefulness. A well - designed heuristic 

would have a value of b* close to 1, allowing fairly large problem to be solved 

(Russell& Norvig, 2003; Colton, 2005). 
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3.1   Introduction 
The Traveling Salesman Problem (TSP), in which a salesman makes a 

complete tour of the cities on his route and visits each city exactly once while 

traveling the shortest possible distance, is an example of a problem that has a 

combinatorial explosion. As such, it cannot be solved using breadth-first or 

depth-first search for problems of any realistic size. Unfortunately, there are 

many problems which have this form and which are essentially intractable. In these 

cases, finding the best possible answer is not computationally feasible, and so we 

have to settle for a good answer (Bigus & Bigus, 2001). 

The most common problem-solving technique for the situation depicted 

above is what is called heuristic search. It generally encompasses a collection of 

methods, principles and criteria for guiding problem-solving activities, based on 

rule of thumb, on discrimination between the good and bad search-step selected, 

or simply on repeated evaluation of the progress made toward selected, or simply 

on repeated evolution of the progress made toward the solution goal. In doing so 

we apply our heuristic knowledge, gained from hands-on experience. Such 

knowledge involves a mixture of facts, simplified evaluation criteria, and rules of 

thumb. The heuristic search technique includes search concepts like: Hill-

climbing, Best-first search, Beam search, Branch & Bound Search, and A* 

(Bhatkar, 1994).  

  

http://dis-tance.is/
http://such.it/
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Branch and Bound is one of several techniques which can reduce the 

search complexity (Horowitz and Sahni 1978; Luger, 2005).  Branch and bound 

algorithm traces a decision tree whose leaves represent all possible solutions. 

Design decisions are made at each internal node while the leaves of the subtree 

rooted at an internal node are the solutions due to that decision. Given a best 

solution found during execution of the branch and bound algorithm, a subtree can 

be pruned if a lower bound estimate of the cost function of all solutions of the 

subtree is higher than the cost of the current best solution. Tight and fast 

computable lower bounds therefore improve the run time requirements of such 

algorithms (Kruse et al. , 2000). 

Branch and Bound augmented by underestimate search is an 

improved version for B&B search. It uses the known cost combined with an 

estimate of the distance from the state to the goal in order to choose the best 

node to expand. Branch and Bound augmented by underestimate is 

complete and optimal, and has memory requirements comparable to depth-first 

search (Bigus & Bigus, 2001). 

The existing Branch and Bound searching technique is a technique that 

works well on precise data, but not on imprecise data whereas data available are 

not always crisp in real life.  Fuzzy logic might be an appropriate tool to enhance 

dealing with such problems. 

In this work, a new type of Branch and Bound searching technique using 

fuzzy underestimates is proposed.  Our objective in this dissertation, is to deal 

with the imprecise data involved in different kind of existing searching techniques, 
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 in more efficient ways. Thus an improved version of searching techniques 

under uncertainty has been suggested, which will be helpful in many real life 

problems of computer science,  especially in AI field. 

In this chapter we will consider a search problem and its solution by the 

existing crisp method of branch and bound search. Consequently we will propose 

a new method of branch and bound with fuzzy underestimates, giving the 

corresponding algorithm, and explaining the algorithm by two applications 

(examples). 

We are to explain in details Branch and Bound Search (Crisp Method) 

by providing crisp Branch and Bound algorithm, and crisp Branch and 

Bound augmented by underestimates algorithm giving : Search Examples, 

Search algorithm  explanations for both procedures.  

Then we are to explain in details Branch and Bound Search (Fuzzy 

Method)  by providing the suggested algorithm explanation giving : Branch 

and Bound Fuzzy Method algorithm, and flow chart explanation. 

Finally we are to explain in details two applications as examples for the 

suggested algorithm. 

3.2 Branch and Bound Search :  Crisp Method 
 

One way to find optimal paths with less work is to use branch-and-bound 

search, where B&B Expands the least-cost partial path. The basic idea is simple. 

Suppose an optimal solution is desired for the highway map shown previously. 

Also suppose that an other source has told you that S-A-B-G is the optimal 

solution. Being a scientist, however you do not trust others.  
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Nevertheless, knowing that the length of S-A-B-G is 17; you can eliminate 

some work that you might otherwise do. For example, as shown in Figure (3.1) 

there is no need to consider paths that start with S-A-B-C, because their length 

has to be at least 17, given that the length of S-A-B-C is already 17.  

 

More generally, the branch-and-bound scheme always keeps track of all 

partial paths contending for further consideration. The shortest one is extended 

one level, creating as many new partial paths as there are branches. Next, these 

new paths are considered, along with the remaining old ones: again, the shortest 

is extended. This process repeats until the goal is reached along some path. 

Because the shortest path was always the one chosen for extension, the path 

first reaching the goal is “likely” to be the optimal path.  

To turn “likely” into “certain” the searcher has to extend all partial paths 

until they are as long as or longer than the complete path. The reason is that the 

last step in reaching the goal may be long enough to make the supposed solution 

longer than one or more partial paths. It might be that only a tiny step would 

extend one of the partial paths to the solution point. To be sure that this is not so, 

instead of terminating when a path is found, you terminate when the shortest 

partial path is longer than the shortest complete path.  

C G

B

A

S 

17 17 

Figure 3.1: Branch-and-Bound Search. 
Length of the complete path from S to G,  

 S-A-B-G is 17.   Similarly, the length of the 

partial path S-A-B-C also is 17 and any 

additional movement along a branch will 

make it longer than 17. Accordingly, there is 

no need to pursue S-A-B-C any further 

because any complete path starting with S-A-

B-C has to be longer than a complete path 

already known. Only the other paths 

emerging from S, from S-A and from S-A-B 

have to be considered, as they may provide a 

shorter path. 
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The procedure differs from the basic search procedures only in the steps 

shown in bold italic bellow: 

 

 

To conduct a branch-and-bound search,  

1- Form a one-element queue consisting of a zero-length path that contains 

only the root node.  

2- Until the first path in the queue terminates at the goal node or the queue is 

empty,  

2.1- Remove the first path from the queue; create new paths by extending 

the   first path to all the neighbors of the terminal node.     

2.2- Reject all new paths with loops.  

2.3- Add the remaining new paths, if any, to the queue.  

2.4- Sort the entire queue by path length with least-cost paths in 

front.  

3- If the goal node is found, announce success; otherwise, announce failure. 

 
Now look again at the map-traversal problem, and note how branch-and- 

bound works when started with no partial paths, Figure (3.2) illustrates the 

exploration sequence, where the numbers beside the nodes denotes the length 

of each path (cost) . 

  

1-In the first step, the partial-path distance of S-A is found to be 42, and that of  S-D is found to be 

44; partial path S-A is therefore selected for expansion. 

44 
42 

S 

A 
D 

Figure 3.2:    Branch and Bound  Search Example 
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2- Next, S-A-B and S-A-D are generated from S-A with partial path distances of 55 and 63.  

44 
42 

S 

A 
D 

63 55 B D 

3- Now  S-D, with a partial path distance of 44, is expanded, leading to partial paths to S-D-A 

and S-D-E. At this point, there are four  partial paths, with the path S-A-B being the shortest 

with a partial path distance of 55.  

44 
42 

S 

A 
D 

63 55 B D 71 65 A E 

44 
42 

S 

A 
D 

63 55 B D 

80 

83 83 

C E G 

71 65 A E 

X 

4-Then expanding  S-A-B , leads to S-A-B-C, S-A-B-E, and S-A-B-G with partial path distances 

of 83, 80, and 83, where S-A-B-G is the shortest complete path, but to be absolutely sure, all 

partial paths with partial path distances less than 83 must be expanded. There is no need to extend 

the partial path S-A-B-C, because its partial-path distance of 83 is equal to that of the complete 

path. 
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44 
42 

S 

A D 

63 55 B D 

80 
83 83 

C E G 

90 

E 

71 65 A E 

X X 

44 
42 

S 

A 
D 

63 55 B D 

80 
83 83 

C E G 

90 

E 

71 65 A E 

78 
B 

6-Then S-D-A-B is generated from S-D-A with partial path distances 78.  

X X 

44 
42 

S 

A 
D 

63 55 B D 

80 
83 83 

C E G 

90 

E 

71 65 A E 

78 
B 

96 
B 

7-Now S-D-E-B is generated from S-D-E with partial path distances 96.  After the seventh 

step, partial path S-D-A-B is the shortest partial path. 

X X 
X 

5-Now S-A-D, with a partial path distance of 63, is expanded, leading to partial path S-A-D-E. 

At this point, there are six partial paths, with the path S-D-A being the shortest with a partial 

path distance of 65.  
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In this particular example, little work is avoided relative to exhaustive 

search, British Museum style.   

Figure (3.3) will explain the algorithm  of Branch-and-Bound search 

according to the previous example shown in Figure (3.2), where the numbers 

beside the nodes are the length of each path. 

44 
42 

S 

A D 

63 55 B D 

80 
83 83 

C E G 

90 

E 

71 65 A E 

78 
B 

96 
B 

103 
106 106 

C E G 

8-Expanding S-D-A-B leads to partial paths terminating at C, G, and E.  

X 
X 

X 

X 

X X 

44 
42 

103 

80 

63 55 

107 
106 106 

78 

71 65 

96 

83 83 90 

S 

A 

B 

C 

D 

D 

E E G 

A 

B B 

C 

D 

E 

E 

G 

9- Finally, expanding S-A-B-E, leads to partial path S-A-B-E-D, with a partial-

path distance of 117. Then there is no need to extend any partial path, because 

their partial-path distances exceed the complete path (83).  

X 

X 

X 
X 

X 

X X 



www.manaraa.com

 

67 

 

SA 
:42 

 

SS 
:0 

 

4 

3 

2 

0 

SDA 
:65 

 

SDE 
:71 

 

SABE 
:80 

 

SABC 
:83 

 

SABG 
:83 

 
6 

5 SADE 
:90 

 

SABE 
:80 

 

SABC 
:83 

 

SABG 
:83 

 

SADE 
:90 

 

SDEB 
:96 

 

SDABE 
:103 

8 

9 

SABG 
:83 

 

SAB 
:55  

 

SAD 
:63 

SDA 
:65 

SDE 
:71  

SAD 
:63 

 

SDA 
:65 

 

SABC 
: 83 

SDE 
:71 

SABE 
:80 

 

10 

1 

7 

Extend SS to D,A 

Extend SA to B,D 

Extend SDE to B 

  

Extend SDA to B 

  

Extend SAD to E 

Extend SD to A, E  

 

Extend SAB to C,E,G  

SD 
:44 

 

SD 
:44 

 

SAB 
:55  

SDE 
:71 

 

SDAB 
:78 

 

SABE 
:80 

 

SABC 
:83 

 

SABG 
:83 

 

SADE 
:90 
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:80 

 

SABC 
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SDEB 
:96 
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Extend SDAB to C,G, E 

  
Extend  

SABE 

 to D 

SABED 
:107 
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SABC 
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SADE 
:90 

 

SDEB 
:96 
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SABED 
:107 

 

SUCCESS 
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:90 

 

SDEB 
:96 

 

SDABE 
:103 

 

SDABC 
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103 
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78 

71 65 
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83 83 90 
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D 

D 

E E G 
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B B 

C 

D 

E 

E 

G 

Figure3.3:    Branch and Bound  Search algorithm  explanation  
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3.2.1 Adding Underestimates to (Branch and Bound) Search 
 

In some cases, branch-and-bound search can be improved greatly by using 

guesses about distances remaining, as well as facts about distances already 

accumulated. After all, if a guess about distance remaining is suitable, then that 

guessed distance added to the definitely known distance already traversed 

should be a good estimate of total path length, e (total path length):  

 

e (total path length) = d (already traveled) + e (distance remaining), 

 

where d (already traveled) is the known distance already traveled, and where e 

(distance remaining) is an estimate of the distance remaining.  

Surely it makes sense to work hardest on developing the path with the 

shortest estimated path length until the estimate is revised upward enough to 

make some other path be the one with the shortest estimated path length. After 

all, if the guesses were perfect, this approach would keep you on the optimal path 

at all times.  

In general, however, guesses are not perfect, and a bad overestimate 

somewhere along the true optimal path may cause you to wander away from that 

optimal path permanently. Note, however, that underestimates cannot cause the 

right path to be overlooked. An underestimate of the distance remaining yields an 

underestimate of total path length, u(total path length): 
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u (total path length) = d (already traveled) + u (distance remaining), 

 

where d(already traveled) is the known distance already traveled, and 

u(distance remaining) is an underestimate of the distance remaining.  

Now, if one finds a total path by extending the path with the smallest 

underestimate repeatedly, he needs to do no further work once all partial- path 

distance estimates are longer than the best complete path distance so far 

encountered. One can stop because the real distance along a complete path 

cannot be less than an underestimate of that distance. If all estimates of 

remaining distance can be guaranteed to be underestimates, searcher cannot 

blunder.   

When one is working out a path on a highway map, straight-line distance is 

guaranteed to be an underestimate. Figure (3.4) shows the straight-line distances 

from each city to the goal which are considered as underestimates of distances 

remaining (ur). Figure (3.5) shows the already traveled distances at each city (d). 

Figure (3.6) shows how straight- line distance helps to make the search efficient, 

where branch-and- bound search augmented by underestimates determines  that 

the path S-A-B-C-G is optimal. The numbers beside the nodes are underestimate 

of total path length (ut) which is calculated as follows: 

(ut) =  accumulated distances(d) + underestimates of distances 

remaining(ur).  

Underestimates quickly push up the lengths associated with bad paths. In 

this example, many fewer nodes are expanded than would be expanded with 
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 branch-and- bound search operating without underestimates. 
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Figure 3.4: Example of 

straight- line distances 

between each city and the 

goal = (ur). 
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172 138 
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A E B 
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E E C G 

D 

B B 
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120 

Figure 3.5: Example of already traveled distances at each city = (d). 

1- In the first step, as before, D and A are generated from S, at node A, Aut = d (48) 

+ ur(46) = 94, at node D, Dut = d (57) + ur(76) = 133, A is the node from which to search, 

because A’s underestimated path length is 94, which is shorter than that for D, 133.  

S 

A D 133 94 

S 

A D 

B D 
133 

96 156 

Figure 3.6: Branch and Bound  Search augmented by underestimates Example 
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3-Now S-A-B is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to partial paths S-A-B-C, with an 

underestimated path length =d(98)+ur(23)= 121,S-A-B-E with an underestimated path length 

=d(97)+ur(21)= 118,  and to partial path S-A-B-G, with a underestimated path length= 

d(131)=131, where S-A-B-G is the shortest complete path, but to be absolutely sure, all partial 

paths with partial path distances less than 131 must be expanded.  

 2-Expanding A leads to partial paths S-A-B, with an underestimated path length 

=d(66)+ur(30)= 96, and to partial path S-A-D, with a underestimated path length= 

d(80)+ur(76)=156.  

4- Now S-A-B-E is the partial path to extend, as it is the partial path with the minimum 

underestimated path length =118. This expansion leads to partial path S-A-B-E-D, with an underestimated 

path length =d(107)+ur(76)= 183.  
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In the previous example, a great deal of work is avoided. Here is the 

modified procedure, with the modification in italic: 

_______________________________________________________________

_____ 

To conduct a branch-and-bound search with a lower-bound estimate,  

 1-Form a one-element queue consisting of a zero-length path that contains only 

the root node.  

 2-Until the first path in the queue terminates at the goal node or the queue is 

empty,  

2.1- Remove the first path from the queue; create new paths by extending 

the first path to all the neighbors of the terminal node.  

2.2- Reject all new paths with loops.  

2.3- Add the remaining new paths, if any, to the queue.  

2.4- Sort the entire queue by the sum of the path length and a lower- 

  

5- Finally S-A-B-C is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total distance of 120. 

No partial path has a lower-bound distance, so low, so no further search is required. 

 

156 

131 

183 

S 

A D 

B D 

E C G 

G D 

133 

120 
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bound estimate of the cost remaining, with least-cost paths in front.  

  3- If the goal node is found, announce success; otherwise, announce failure.  

_______________________________________________________________
____ 
 

Of course, the closer an underestimate is to the true distance, the more 

efficiently the search because, if there is no difference at all, there is no chance 

of developing any false movement. At the other extreme, an underestimate may 

be so poor as to be hardly better than a guess of zero, which certainly must 

always be the ultimate underestimate of remaining distance. In fact. ignoring 

estimates of remaining distance altogether can be viewed as the special case in 

which the underestimate used is uniformly zero. 

Figure (3.7) will explain the algorithm of Branch-and-Bound search augmented 

by underestimate, according to the previous example: 
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Figure 3.7: Branch and Bound  Search augmented by 

underestimate/ algorithm  explanation.  

SS:0 

3 

2 

0 

1 

Extend SS to D,A 

Extend SA to B,D 

 to  

SAB 

: 96 

 

SD 

: 133 
SAD 

: 156 

 
SABE 

: 118 

 

SABC 

:121  
 

SABG 

: 131 

 

SD 

: 133 

 

SAD 

: 156 

 

Extend SAB to C,E,G 

  

Extend SABE to D 

4 
SABC 

: 121 

 

SABG 

: 131 

 

SD 

: 133 
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3.3. Branch and Bound Search :  Fuzzy Method 
 

The suggested 'Branch and Bound Searching Technique Using Fuzzy 

Underestimate' is the same as the existing 'Branch and Bound Searching 

Technique Using Crisp Underestimate' in all steps, unless that the suggested 

method deals with underestimation of the remaining distance as a fuzzy data , 

taking into consideration the assumption that “the underlying graph is crisp and 

the parameters related with its arcs are fuzzy numbers.” (Blue et al,2002). 

A fuzzy underestimate of the distance remaining yields a  fuzzy 

underestimate of total path length, utf (total path length):   

 

utf (total path length) = d (already traveled) + urf (distance remaining), 

 

where d (already traveled) is the known distance already traveled, and urf 

(distance remaining) is a fuzzy underestimate of the distance remaining. 

Fuzzy underestimation for the remaining distance (fuzzy data) can be processed 

according to the following steps as shown in Figure (3.8): 
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3.3.1 Fuzzy underestimate 
 

The following fuzzy data expressions (as estimation of the remaining 

distance) can be provided to the searcher:  

 Examples:- 

1) underestimate may be  “approx. 24”  

  2) Underestimate may be  “at least 24”  

  3) Underestimate may be  “More than 24”  

  4) Underestimate may be “not less than 24” ….Etc. 

Searcher knows that : 

 These all are fuzzy numbers, then. 

  Choose a Triangular Fuzzy Number (TFN) model. 

= “approx. a”   d)estimateinformation (Fuzzy  

Choose α  

 

Take α–cut of “approx. a” = [α1, α2] 

 

Defuzzification of underestimate = α1 

 

Choose a triangular fuzzy number model 

Figure 3.8: Fuzzy data processing steps. 
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3.3.1.1 Using a TFN 
 

Each of the above data “estimate” can be modeled as a triangular fuzzy 

number, where a triangular fuzzy number specifications can be determined by a 

decision maker. 

A triangular fuzzy number for “approx. a” can be as shown in Figure (3.9) : 

 

 
This TFN  “approx. a” is denoted by the notation (a1, a , a2). The membership 

function of the fuzzy set “approx. a” is given by the following function:- 

 

 

 

 

 

 

 

 

 

 

 

 

x 

µ 

2a 1a 1α 2α a 

1 

α 

0 
 

Figure 3.9: TFN model for “approximately a”  or  “approx. a”  

 

    0           ,   if     x   ≤ a1 
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



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
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2 ,   if    a  ≤ x ≤ a2 

    0            ,   if     x  ≥ a2 

 

µ “approx. a” (x)  = 
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3.3.1.2 Choosing α  
 

A fixed "decision parameter" α must be chosen according to confidence in 

the source of estimation, or confidence in the value of estimation.   1,0 , 

according to the following: 

*  If the decision maker (searcher) is highly confident, then he can 

choose high value of  α, such as:   0.9, or 0.95. …etc. 

* But if he is not highly confident, better not to choose a high value of  

α     , choose. α = 0.8, 0.75, or 0.82. …etc. 

3.3.1.3 α-cut of  “approx. a” = [α1, α2] 
 

The α-cut of “approx. a” will be the interval  21, , where for any                     

 x   21,  one must have:  

                                            µ “approx. a”   (x) ≤ α . 
 

It can be computed as: 









)aa(a

)aa(a

222

111




 

                                       
 
 

 
 
 
 
 
 

 
 
 
  

0 
 x 

µ 

2a 1a 1α 2α 

1 

α 

Figure 3.9: TFN model for “approximately a”  or  “app. a”  
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3.3.1.4 Defuzzification 
 

There are two choices for α: 

         1 = underestimate of the fuzzy number “app. a”   

         2 = overestimate of the fuzzy number “app. a”   

Then searcher must choose the underestimated value 1 . 

Example 3.1:-  

1- The provided fuzzy data expressions for the searcher (as estimation of 

the remaining distance) may be “approx. 27”  

2- Consider a TFN “approx. 27” = (24 , 27, 35), as shown in Figure (3.10): 

Note: we will consider a1 = (a -3), and a2 = (a+8) in our examples in order 

to explain the main idea of our work in a simple way.  

 

3- Consider any choice–parameters α = 0.9  (say). 

4-  α-cut of  “approx. 27” will be: 

)aa(a 111    

 24279.024  = 24 + 2.7= 26.7 

  

µ 

27 

Figure 3.10: TFN model for “approx. 27” 

1 

 

0 
 35 

 
24 

 
x 
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)aa(a 222    
 27359.035  = 35 – 7.2= 27.8 

 
 

Therefore, 0.9-cut of “approx. 27” is the interval  8.27,7.26  as shown in Figure 

(3.11). 
 

 

 

 

 

 

  

 
 

5- Then, we choose finally 1  = underestimate of the fuzzy number “app. 27”    = 

26.7 
 

The procedure of branch-and-bound search with a fuzzy lower-bound 

estimate differs from the basic branch-and-bound search procedures only in the 

steps shown in italic bellow: 

 
To conduct a branch-and-bound search with a fuzzy lower-bound estimate,  

 1-Form a one-element queue consisting of a zero-length path that contains only 

the root node.  

 2-Until the first path in the queue terminates at the goal node or the queue is 

empty,  

2.1- Remove the first path from the queue; create new paths by extending 

the first path to all the neighbors of the terminal node.  

  

0 
 26.7      

 

x 

µ 

35 24 27.8 

 
27 

1 

0.9 

Figure 3.11: TFN model for “approx. 27” with α = 1.9 



www.manaraa.com

 

81 

 

2.2- Reject all new paths with loops. 

2.3- Determine fuzzy lower-bound estimate of the cost remaining as 

follow: 

2.3.1- Take fuzzy estimate of new paths = “approx. a”. 

2.3.2- Denote TFN for “ approx. a“ by the appropriate notation (a1,a 

,a2). 

2.3.3- Choose a fixed “decision - parameter “ α in (0,1), according to 

degree     of  searcher confidence in estimation. 

2.3.4- Take a fuzzy lower-bound estimate of the cost remaining 

        ( lower  α-cut of  “approx. a” ) = 1 , where:      

                                    )aa(a 111     

2.4- Add the remaining new paths, if any, to the queue.  

2.5- Sort the entire queue by the sum of the path length and a fuzzy 

lower-bound estimate of the cost remaining, with least-cost paths 

in front.  

  3- If the goal node is found, announce success; otherwise, announce failure.  

__________________________________________________________
_____ 
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The following flowchart also explains the procedure of branch-and-bound search 

with a fuzzy lower-bound estimate as shown in Figure (3.12): 

 

  

Initialise Q to contain a 
single partial path 

containing the start 
state. 

Does Q’s first path 

terminate at the goal? 

Is Q 

Remove first path from 
Q and expand. 

Add remaining new paths, if any, to the queue. 

Terminate 
with failure 

Terminate with 
success. Return first 

path as solution. 

Y 

Y 
N 

N 

Take fuzzy estimate of new 
paths = “approx. a” 

Denote TFN for “approx. a” by 
).2, a, a1the appropriate notation (a 

Choose a fixed  

“decision – parameter” α 

Take a fuzzy lower-bound estimate 
of the cost remaining 

 

Sort the entire queue by the sum of the path length 
and a fuzzy lower-bound estimate of the cost 

remaining, with least-cost paths in front. 
 

Figure 3.12: flow chart procedure of branch-and-bound search with a fuzzy lower-bound estimate.  
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When a searcher is working out of a path on a highway map, straight-line 

distance is guaranteed to be an underestimate, but if searcher has better source 

of information about the remaining distance estimation, then search procedure 

will be more efficient. 

Confidence in underestimation of remaining distance may vary from case 

to case; so   also will vary according to the degree of searcher confidence in the 

value of underestimation. 

3.4 Applications 
 

We will take two applications as examples for the proposed branch and 

bound with fuzzy underestimate algorithm. 

The first application will adopt the previous example which was explained 

for branch and bound augmented by crisp underestimate algorithm (figure 3.5) 

as a random net application which will be explained in section 3.4.1.  

The second application will adopt the real roads between two major 

Jordanian cities as an example, which will be explained in section 3.4.2.  

3.4.1 Random net Application  
 
In the following example, if a decision–maker takes  a fixed TFN model slope 

as (a-3 , a , a+8), at each node he/she will take fuzzy estimate of remaining 

distance for new paths = “approx. a" from different information sources = IS, 

he/she will choose α according to the degree  of  searcher confidence in 

underestimation, take a fuzzy lower-bound estimate of the cost remaining; 

)aa(a 111   , and finally he/she will add new paths and sort the paths by 

the sum of the already traveled path length = d and the fuzzy lower-bound 
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 estimate of the remaining distance = ufr  to choose the shortest path.  

 
Consider the following net, which is shown in Figure (3.13) The traveler is 

at the node S and intends to go to node G. All possible routs are shown in the net 

graph, the number against each edge gives the actual distance of that route (node 

to node) in some unit . The traveler has no knowledge about the distance 

information; but the traveler records the distance he completed. 

 

 

Figure (3.14) shows the fuzzy estimates of distances remaining (ufr) from 

each city to the goal; Figure (3.16) shows how fuzzy underestimates of distances 

remaining helps to make the search more efficient, where Branch-and- bound 

search augmented by fuzzy underestimates determines  that the path S-A-B-C-

G is optimal. The numbers beside the nodes are underestimate of total path 

length (uft) =  accumulated distances(d) + fuzzy lower-bound estimate of the cost 

remaining (α1). 

Fuzzy underestimates quickly push up the lengths associated with bad 

paths. In this example, fewer nodes are expanded than would be expanded with 

branch-and- bound search operating with crisp underestimates. 

  

31 

48 

57 

18 

10 65 

22 

32 
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D E G 

32 

Figure 3.13: net 

graph with actual 

distance of each 

route. 
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Part of the tree, which must be explored by the proposed algorithm will be as 

shown in Figure (3.15):- 

 
The problem can be solved by applying the proposed algorithm of section 3.2 as 

shown in the following example:- 

 
 
 
 
 
 
 
 
 
 
 
  

S 

A B C 

D E G 

ufr = 83 

ufr = 75 

ufr = 131 ufr = 91  

ufr = 61 

ufr = 22 

Figure 3.14: Example for fuzzy estimates of remaining 

distances (ufr) between each city and the goal . 

 

IS = G citizen, ufr =22, α = 0.9, 

TFN(19, 22, 30), α1 = 21.7, 
uft =d(98)+ α1(21.7) = 119.7 

       

IS = Taxi driver, ufr =60, α = 0.7, 

TFN(57,  60,  68), α1 =59.1, 

uft =d(66)+ α1(59.1) = 125.1 
 

131 

120 

IS = Old man, ufr =83, α = 0.5, 
TFN(80, 83, 91), α1 = 81.5 

uft =d(48)+ α1(81.5) = 129.5 

 

IS= Official sign, ufr =131, α = 0.95, 
TFN(128, 131, 139), α1=130.85 

uft =d(57)+ α1(130.85) =187.85 

IS = Taxi driver using path daily, 

 ufr=131, α = 0.9, 
TFN (128, 131, 139), α1 = 130.7,  

 uft =d(80)+ α1(130.7) = 201.7 

 IS = D citizen, ufr =90, α = 0.8, 

TFN(87, 90, 98), α1 = 89.4, 
uft =d(97)+ α1(89.4) = 186.4 

       

S 

A 

B 

C 

D 

E 

G 

G 

D 

Figure 3.15: The explored part of the tree.At each node there is, specific source for estimated 

information =IS, who (which) will give fuzzy cost underestimate of remaining distance = “approx. 
a" = a, decision maker will choose an appropriate α, TFN model, & lower α-cut for that node. 

IS = Old man, ufr =83, α = 0.5, 

TFN(80, 83, 91), α1 = 81.5 

uft =d(48)+ α1(81.5) = 129.5 
 

 

 

 

 

IS= Official sign, ufr =131, α=0.95, 

TFN(128, 131, 139), α1=130.85 

uft =d(57)+ α1(130.85) =187.85 

1- In the first step, D and A are generated from S, at node A if the information source (IS) was an 

old  man, who gives a fuzzy estimate of remaining distance as a = "approx. 83", decision maker can 

choose TFN as (80, 83, 91),and α=0.5 to produce α1=81.5 which will be add to the distance already 

traveled d = 48, to produce the fuzzy underestimate of total path length uft =129.5. 

While node D information source about remaining distance (IS) was an Official sign with a = 

"approx. 131", decision maker can choose TFN as (128, 131, 139), and α = 0.95 to produce 

α1=130.85 which will be add to the distance already traveled d =57, to produce the fuzzy 

underestimate of total path length uft =187.85. 

A is the node from which to search, because A’s fuzzy underestimated path length is 129.5, 

which is shorter than that for D, 187.85.  

 

S 

A 
D 
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Figure 3.16:  Example for Branch and Bound  Search augmented by fuzzy underestimates 

  

 2- Expanding A leads to partial paths S-A-B, with a fuzzy underestimated path length of 125.1, 

and to partial path S-A-D, with a fuzzy underestimated path length of 201.7 

.  

S 

A 
D 

IS = Taxi driver  using path daily, ufr=131, α = 0.9,   

TFN (128, 131, 139), α1 = 130.7,  

 uft =d(80)+ α1(130.7) = 201.7 
 

 

 

 

 

IS = Taxi driver, ufr =60, α = 0.7, 

TFN(57,  60,  68), α1 =59.1, 

uft =d(66)+ α1(59.1) = 125.1 
 

 

B D 

4- Finally, S-A-B-C is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total 

distance of 121. No partial path has a lower-bound distance  so low, so no further search is required. 

3- Now S-A-B is the partial path to extend, as it is the partial path with the minimum fuzzy 

underestimated path length. This expansion leads to partial paths S-A-B-C, with a fuzzy 

underestimated path length of 119.7, partial path S-A-B-E, with a fuzzy underestimated path length 

of 186.4, and to the shortest complete path, S-A-B-G, with a total distance of 131, but to be 

absolutely sure, all partial paths with partial path distances less than 131 must be expanded. There 

is no need to extend the partial path S-A-B-E, because its partial-path distance of 186.4 is more 

than that of the complete path. 

 .  
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IS = D citizen, ufr =90, α = 0.8, 

TFN(87, 90, 98), α1 = 89.4, 
uft =d(97)+ α1(89.4) = 186.4 

       

 

 

 
 

 

 

 

IS = G citizen, ufr =22, α = 0.9, 

 TFN(19, 22, 30), α1 = 21.7, 
uft =d(98)+ α1(21.7) = 119.7 
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Figure (3.17) explains the algorithm of Branch-and-Bound search augmented by 

fuzzy underestimate, according to the previous example: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17:  Branch and Bound  Search augmented by fuzzy underestimate/ algorithm  

explanation  

 

3.4.2 Roads between Two Jordanian Cities Application  
 
In the following example, we will adopt a real life example; i.e. real roads 

between two major Jordanian cities; say from Al Karak to Irbid according to an 

official map of Jordan, as shown in Figure (3.18), where one can plan a route 

from Al Karak as a start node (S) to Irbid as a goal node (G) in the following 

map. 
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SAD 
: 201.7 

 
SUCCES

S! 

IS = G citizen, ufr =22, α = 0.9, 

TFN(19, 22, 30), α1 = 21.7, 
uft =d(98)+ α1(21.7) = 119.7 

       

IS = Taxi driver, ufr =60, α = 0.7, 
TFN(57,  60,  68), α1 =59.1, 

uft =d(66)+ α1(59.1) = 125.1 

 

131 

120 

IS = Old man, ufr =83, α = 0.5, 
TFN(80, 83, 91), α1 = 81.5 

uft =d(48)+ α1(81.5) = 129.5 

 

IS= Official sign, ufr =131, α = 0.95, 
TFN(128, 131, 139), α1=130.85 

uft =d(57)+ α1(130.85) =187.85 

IS = Taxi driver using path daily, 

 ufr=131, α = 0.9, 
TFN (128, 131, 139), α1 = 130.7,  

 uft =d(80)+ α1(130.7) = 201.7 

 IS = D citizen, ufr =90, α = 0.8, 

TFN(87, 90, 98), α1 = 89.4, 
uft =d(97)+ α1(89.4) = 186.4 
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Suppose that Mr. X is trying to find some path from Al Karak to Irbid using 

a highway map such as the one shown in Figure (3.18). The starting point in Al 

Karak denoted as Kr, which might be called (start node), and ending point in 

Irbid denoted as Ir, which might be called (goal node), other cities (nodes) are 

denoted as shown in the key table of Figure (3.18). 

 

 

 

 

 

 

 

 

 

 

 

  

34 

 

36

16 

13 

1 Rm 

Sw 

Db Zm 

Qt 

Ir 

Mq 

Zg 

Jr 
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Md 

Kr 

Tf 

22 

16 

76 

15 

28 

27 

31 

57 

36 

Jd 

31 

34 

58 

60 

28 

34 

33 

Figure 3.18: net graph from Karak 

to Irbid with actual distance of each 

route. 

Cities (nodes) are denoted as shown 

in the key table 

Key table 

City Name Notation 
 City 

Name 
Notation 

Jurf Al 

Daraweesh 
Jd 

 
Seweleh Sw 

Qutraneh 
Qt 

 
Al Salt St 

Zmailih 
Zm 

 Jarash, 
Jr 

Dhiban 
Db 

 Ramtha 
Rm 

Madaba Md  Mafraq 
Mq 

Aamman Am  Zarga 
Zg 

   Azraq 
Az 
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The traveler is at Al Karak, and intends to go to Irbid. All possible routs are 

shown in the net graph, the number against each edge gives the actual distance 

of that route (node to node) in kilometers. The traveler has no knowledge about 

the distance information, but the traveler records the distance he/she completed. 

Figure (3.19) shows the fuzzy estimates of remaining distances from each 

city (or intersection node) to Irbid (the goal) , where the number against each 

edge gives that estimated distances in kilometers = (efr).  

 

 

 

 

 

 

With looping paths eliminated, one can arrange all possible paths from the 

start node (Kr) in a search tree. Figure (3.20) shows a search tree that consists 

of nodes denoting the possible paths that lead outward from the start node Al 

Karak (S) of the net shown in Figure (3.18), the number against each edge gives 

the actual distance of that route (node to node) in kilometers.  

  

135 173 
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80 
60 

70 15 

Am Sw Zm 
Kr 

Db 

Qt 

St Rm 

Ir 

Figure 3.19: fuzzy estimates of remaining distances from each city (or intersection 

node) to Irbid =efr. Cities (nodes) are denoted as shown in the key table of figure (3.18). 
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If a decision–maker takes  a fixed TFN model slope as (a-3 , a , a+8), at 

each node he/she will take fuzzy estimate of remaining distance for new paths 

= efr = “approx. a" from different information sources = IS, choose α according 

to degree  of  searcher confidence in estimation, take a fuzzy lower-bound 

estimate of the cost remaining; )aa(a 111   , and finally  he/she will add 

new paths, and sort the paths by the sum of the already traveled path length = 

d and the fuzzy lower-bound estimate of the remaining distance = ufr  to 

choose the shortest path.  

  

Figure 3.20: A search tree that consists of nodes denoting all possible paths those lead outward from 

the start node Al Karak (S) of the net shown in figure (3.18). 
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Figure (3.21) shows how fuzzy underestimates of distances remaining helps 

to make the search more efficient, where Branch-and- bound search augmented 

by fuzzy underestimates determines  that the path Kr- I4- Md- Am- Sw- Jr- Rm- Ir  is 

optimal. The numbers beside the nodes are underestimate of total path length 

(uft) =  accumulated distances(d) + fuzzy lower-bound estimate of the cost 

remaining (α1). 

 Fuzzy underestimates quickly push up the lengths associated with bad 

paths. In this example, fewer nodes are expanded than would be expanded with 

branch-and- bound search operating with crisp underestimates. 

Part of the tree, which must be explored by the proposed algorithm will be as 

shown in figure (3.21):- 

  

IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 
TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 

 

Figure 3.21: The explored part of the tree.At each node there is, specific source for estimated 

information =IS, who (which) will give fuzzy cost estimate of remaining distance = “approx. a" = a, 

decision maker will choose an appropriate α, TFN model, & lower α-cut for that node. 
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IS = Official sign, efr =135, α = 0.95, 
TFN(132, 135, 143), α1 =134.84, 

uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 
uft =d(34)+ α1(169.25) = 206.25 

 

IS=Farmer, efr =140, α = 0.4, 
TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 
TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 

 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 
uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 

TFN(37, 40, 48), α1 =39.1, 

uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 
TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 

 

IS = Taxi driver using path daily, efr =15, 
α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 

180 
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The problem can be solved by applying the proposed algorithm of section 4.2 as 

in the following example:- 

Figure 3.22:  Example for Branch and Bound  Search augmented by fuzzy underestimates 

 

 

  

Db Qt 

Kr 

34 34 

IS = Bus Driver, efr =170, α = 0.75, 
TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 

IS=Farmer, efr =140, α = 0.4, 
TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

1- In the first step, as before, Db and Qt are generated from Kr(S), at node Db if the information 

source (IS) was a Farmer, who gives a fuzzy estimate of remaining distance as a = "approx. 140", 

decision maker can choose TFN as (137, 140, 148),and α=0.4 to produce α1=138.2 which will be 

added to the distance already traveled d = 34, to produce the fuzzy underestimate of total path 

length uft =193.85. 

While at node Qt information source about remaining distance (IS) was a Bus Driver with a = 

"approx. 170", decision maker can choose TFN as (167, 170, 178), and α = 0.75 to produce 

α1=169.25 which will be add to the distance already traveled d =34, to produce the fuzzy 

underestimate of total path length uft =206.25.  

Db  is the node from which to search, because Db ’s fuzzy underestimated path length is 193.85, 

which is shorter than that for Qt, 206.25.  

 

Md Zm 

Db  

28 31 

Qt  

Kr 

34 

206.25 

IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 
uft =d(62)+ α1(134.84) = 196.84 

 

IS = taxi Driver, efr =110, α = 0.7, 
TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 

 

 2-Expanding  Db eads to partial paths Kr- Db - Md, with a fuzzy underestimated path length of 

174.1, and to partial path Kr- Db - Zm, with a fuzzy underestimated path length of 196.84 

34 

IS = Police Man, efr =80, α = 0.9, 
TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 

 

Md 

Am 

31 

Db 

28 31 

Kr 

34 34 

Zm 

196.84 
 

Qt 

206.25 

3-Now Kr- Db - Md is the partial path to extend, as it is the partial path with the minimum fuzzy 

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am with a fuzzy 

underestimated path length of 175.7.  
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IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
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Kr 

34 34 

196.84 

206.25 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 
TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

4- Now Kr- Db - Md- Am is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am- Sw 

, with a fuzzy underestimated path length of 168.4, and to partial Kr- Db - Md- Am- Zg, with a 

fuzzy underestimated path length of 226.2. 

Kr- Db - Md- Am- Sw is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. 

 

IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 
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Kr 
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IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 
uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 
uft =d(34)+ α1(169.25) = 206.25 

 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 
TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 

 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 
uft =d(118)+ α1(108.2) = 226.2 

 

 
IS = Taxi driver, efr =40, α = 0.7, 
TFN(37, 40, 48), α1 =39.1, 

IS = Official Sign, efr =70, α = 0.95, 
TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 

 

 5-Expanding Sw leads to partial paths Kr- Db- Md- Am- Sw- St, with a fuzzy underestimated 

path length of 193.85, and to partial path Kr- Db - Md- Am- Sw-Jr, with a fuzzy underestimated 

path length of 175.1 
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IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 

 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 
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IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 
 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 

TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 
 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 

TFN(37, 40, 48), α1 =39.1, 
uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 

TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 
 

IS = Taxi driver using path daily, efr =15, 

α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 

6- Now Kr- Db - Md- Am- Sw- Jr is the partial path to extend, because it is the partial path with 

the minimum underestimated path length. This expansion leads to  partial path Kr- Db - Md- Am –

Sw -Jr- Rm, with a fuzzy underestimated path length of 178.7. 
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Figure (3.23) explains the algorithm of Branch-and-Bound search 

augmented by fuzzy underestimate, according to the previous example. 

  

IS = Engineer, efr =60, α = 0.8, 
TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 

 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 
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IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 
 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 

TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 
 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 
TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 

TFN(37, 40, 48), α1 =39.1, 
uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 

TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 
 

IS = Taxi driver using path daily, efr =15, 

α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 

180 

7- Finally, Kr- Db - Md- Am- Sw- Jr- Rm is the partial path to extend, as it is the partial path with 

the minimum underestimated path length. This expansion leads to a complete path, Kr- Db - Md- 

Am- Sw- Jr- Rm- Ir, with a total distance of 180. No partial path has a lower-bound distance so 

low, so no further search is required. 
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IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 
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IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 
uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 
 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 

TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 
 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 
TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 
TFN(37, 40, 48), α1 =39.1, 

uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 

TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 
 

IS = Taxi driver using path daily, efr =15, 

α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 
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Figure 3.23:  Branch and Bound  Search augmented by fuzzy underestimate/ algorithm  explanation  
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3.5 Conclusion 
 

In this chapter a new type of Branch and Bound searching technique using 

fuzzy underestimates is proposed. The objective of this work is to deal with the 

imprecise data involved in different kind of existing searching techniques in a 

more efficient way. 

In general Branch-and-Bound search is suitable when the tree is big and 

bad paths turn distinctly bad quickly. 

Branch-and-Bound search with a guess is suitable when there is a good 

lower-bound estimate of the distance remaining to the goal, where 

underestimates quickly push up the lengths associated with bad paths. In Figure 

(3.6), many fewer nodes are expanded (10 nodes) than which were expanded 

with branch-and- bound search operating without underestimates (17 nodes) as 

shown in Figure (3.2) for the same problem.  

In choosing heuristics, we usually consider the heuristic that reduces the 

number of nodes that need to be examined in the search tree. This can be viewed 

as the reduction of effective branching of search.  

In analyzing search methods, it is important to examine the Effective 

Branching Factor (b*) of each method because it is a suitable way to characterize 

the quality of an heuristic, where a well - designed heuristic would have a value 

of b* close to 1, allowing fairly large problem to be solved (Russell& Norvig, 

2003; Luger, 2005). 
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When evaluating B&B heuristic search strategies which are discussed in 

this chapter in term of EBF (b*) according to the results shown in Table (3.1) and 

the corresponding chart shown in Figure (3.24), we can note that: 

 B&B with crisp underestimate search technique achieve better efficiency 

than regular B&B search technique, where b* was decreased from 1.67 to 

1.4 because underestimation increases the efficiency of B&B by enabling  

it to be more informed. 

 Adding Fuzzy underestimate to B&B search technique achieve better 

efficiency than adding crisp underestimate to B&B search technique, 

where b* was decreased from 1.4 to 1.35 (Figure 3.16) and to 1.13 (Figure 

3.21) because fuzzy underestimation increases the efficiency of B&B with 

crisp underestimate by enabling it to be more informed. 

 Some Fuzzy underestimates can achieve better efficiency than other 

Fuzzy underestimates where the more informed Fuzzy underestimates 

can achieve the better efficiency. Fuzzy underestimation achieved b* = 

1.35 in case of Figure (3.16) but it achieved a better b* = 1.13 in the case 

of Figure (3.21). In general adding Fuzzy underestimates can achieve 

better efficiency than adding crisp underestimates, where Effective 

Branching Factor for Fuzzy Underestimated B&B are always better (less) 

than that for crisp algorithms especially when the number of nodes is high. 

Obviously the closer the Fuzzy underestimate is to the true remaining 

solution cost the more efficient the B&B search will be. 

 B&B Augmented by Fuzzy Underestimate search technique is complete, 

optimal, nonredundant, and more informed than other algorithms. 
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Table 3.1: Evaluation of Heuristic B&B search strategies in terms of effective 

branching factor (b*).  
d: is the depth of the solution,  
N: is the total number of nodes generated by each strategy for a particular problem.  

A well - designed heuristic would have a value of b* close to 1, allowing fairly large problem to 
be solved . 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Evaluation of Heuristic B&B search strategies in terms of effective branching 
factor (b*) according to the results shown in table (3.1). 

  

Figure No. d N b* Type of Search 

3.2 4 17 1.673 Crisp B&B 

3.6 4 10 1.403 B&B with Crisp Underestimation 

3.16 4 9 1.352 B&B with Fuzzy Underestimation  
( Application 1) 

3.21 7 12 1.135 B&B with Fuzzy Underestimation 
( Application 2) 
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4.1 Introduction 
A* algorithm was first presented by Hart et al (Hart, et al 1968; 1972). 

(Rich & Knight,2000). A* is based on one further modification to the Branch and 

Bound technique augmented by underestimates which again improves search 

efficiency, by recognizing and removing redundant paths from the search queue 

according to the Dynamic Programming Principle (Winston, 2000). 

A* has attracted a great deal of attention. It is one of the fundamental 

algorithms of artificial intelligence. A* is the name given to the algorithm 

where the e(node) function is admissible. In other words, it is guaranteed 

to provide an underestimate of the true cost to the goal. A* is optimal and 

complete. In other words, it is guaranteed to find a solution, and that 

solution is guaranteed to be the best solution (Coppin, 2004). 

A* may use all the available memory in a matter of minutes. After that 

the search practically cannot proceed although the user would find it 

acceptable that the algorithm would run for hours or even days (Bratko, 

1998). 

In this work a new type of A* searching technique using fuzzy logic is 

proposed.   The objective of this work is to deal with the imprecise data involved 

in existing A* searching techniques in a more efficient way and thus to suggest 

improved version of A* searching techniques under uncertainty which will be 
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 helpful in many real life problems of computer science, especially in AI field. 

In this chapter we consider a search problem and its solution by the existing 

crisp method of A* search.  We proved that this method can be enhanced using 

fuzzy theory. Consequently we proposed a new method of A* with fuzzy 

underestimates, introducing the corresponding algorithm, and explaining the 

algorithm by two applications (examples). 

We will explain in details A* Search (Crisp Method); by explaining A* 

procedure, providing crisp A* algorithm, and crisp branch-and-bound 

procedure with dynamic programming algorithm giving : Search Examples, 

and Search algorithm  explanations for both procedures.  

Then we are to explain in details A* Search (Fuzzy Method)  by providing the 

suggested algorithm explanation giving : A* Fuzzy Method algorithm, and 

flow chart explanation. 

Finally, we are to explain in details two applications (examples) for the 

suggested algorithm. 

4.2 Dynamic Programming  
 

Dynamic Programming (DP) is sometimes called the forward-backward or, 

when using probabilities, the Viterbi algorithm. Created by Richard Bellman (1956), 

Dynamic programming addresses the issue of restricted memory search in 

problems composed of multiple interacting and interrelated subproblems (Luger, 

2005). 

Now let us consider a different approach to improve on basic branch-and-

bound search. Look at Figure (4.1). The root node, S, has been expanded, 

producing partial paths S-A and S-D. For the moment, let us use no 
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 underestimates for remaining path length. 

 

 
 
 
 
 
 
 
 
Figure 4.1: An illustration of the dynamic programming principle. The numbers 
beside the node are accumulated distances.  
 

Because S-A is shorter than S-D. S-A is extended first, leaving three paths: 

S-A-B, S-A-D, and S-D. Then, S-D will be extended, because it is the partial path 

with the shortest length. 

But, what about the path S-A-D?  Will it ever make sense to extend it? Clearly, 

it will not. Because there is one path to D with length 4, it cannot make sense to 

work with another path to D with length 8. The path S-A-D should be forgotten 

forever; it cannot produce a winner.  

This example illustrates a general principle. Assume that the path from a 

starting point, S, to an intermediate point, I, does not influence the choice of paths 

for traveling from I to a goal point, G. Then the minimum distance from S to G 

through I is the sum of the minimum distance from S to I and the minimum 

distance from I to G. Consequently, the strangely named dynamic-programming 

principle holds that, when you look for the best path from S to G, you can ignore 

all paths from S to any intermediate node, I, other than the minimum-length path 

from S to I.  

The dynamic-programming principle (some times called Path Deletion) can  
  

D 

D 

S 

A 

B 

7 8 

4 

Expanded next 

Never expanded 
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be stated as:  
The best way through a particular, intermediate place is the best way to it 

from the starting place, followed by the best way from it to the goal. There is no 

need to look at any other paths to or from the intermediate place (Winston, 2000; 

Doyle, Dec 5, 2005). 

 So: 

Minimum distance from S to G (through I ) = min. distance from S to I  
+ min. distance from I to G  

 

More precisely: 
 

 IF the QUEUE contains: 
  a path P terminating in I, with cost = cost_P 
  a path Q containing I, with cost = cost_Q 

  cost_P ³ cost_Q 
 

 THEN 
  delete P 

 
 
 
 
 
 
 
 
 
Figure 4.2 A more precisely illustration of the dynamic programming principle.  
                 The numbers beside the node are accumulated distances.  

 

 
The branch-and-bound procedure, with dynamic programming included 

differs from the basic branch-and-bound procedure only in the steps shown in 

bold italic bellow: 

______________________________________________________
_____ 
To conduct a branch-and-bound search with dynamic programming, 

1- Form a one-element queue consisting of a zero-length path that contains only 

the root node.  

P 7 8 

S 

D A 

B D 9 6 A E 

Q 

X 
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2- Until the first path in the queue terminates at the goal node or the queue is 

empty, 

2.1- Remove the first path from the queue; create new paths by extending 

the first path to all the neighbors of the terminal node. 

2.2- Reject all new paths with loops. 

2.3- Add the remaining new paths, if any, to the queue. 

2.4- If two or more paths reach a common node, delete those paths 

except the one that reaches the common node with the minimum 

cost. 

2.5- Sort the entire queue by path length with least-cost paths in front. 

3- If the goal node is found, announce success; otherwise, announce failure.  

______________________________________________________

___ 

Figure 4.3 shows the effect of using the dynamic-programming principle, 

together with branch-and-bound search, on the map-traversal problem, where the 

numbers beside the nodes denotes the length of each path (cost). Four paths are 

cut off quickly, leaving only the dead-end path to node C and the optimal path, S-

D-E-F-G.  

Figure 4.3: Branch and Bound with dynamic-programming principle Search Example. 
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44 
42 

S 

A 
D 

63 55 B D 

80 

83 83 

C E G 

71 65 A E 

X X 

X 

4-Then expanding  S-A-B , leads to S-A-B-C, S-A-B-E, and S-A-B-G with partial path distances 

of 83, 81, and 83, partial path S-A-B-E can be deleted it’s partial-path distance of 81 is more than 

that of S-D-E(71), now  S-A-B-G is the shortest complete path, but to be absolutely sure, all 

partial paths with partial path distances less than 83 must be expanded. Also there is no need to 

extend the partial path S-A-B-C, because its partial-path distance of 83 is equal to that of the 

complete path. 

X 

1-In the first step, the partial-path distance of S-A is found to be 42, and that of  S-D is found to be 

44; partial path S-A is therefore selected for expansion. 

2- Next, S-A-B and S-A-D are generated from S-A with partial path distances of 55 and 63, 

partial path S-A-D can be deleted because its partial-path distance of 63 is more than that of. S-D 

(44). 

44 
42 

S 

A D 

63 55 B D X 

3- Now  S-D, with a partial path distance of 44, is expanded, leading to partial paths S-D-A and 

S-D-E. At this point, partial path S-D-A can be deleted as it’s partial-path distance of 65 is more 

than that of S-A-B(55), then there are  only two  partial paths, with the path S-A-B being the 

shortest with a partial path distance of 55.  

44 
42 

S 

A 
D 

63 55 B D 71 65 A E X X 
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In this particular example little work is avoided relative to branch  and 

bound, where number of steps has been reduced to 5 steps instead of 9. 

Figure (4.4) explains the algorithm  of branch-and-bound search with 

dynamic programming according to the previous example shown in figure (4.3), 

where the numbers beside the nodes are the length of each path: 

  

5- Now S-D-E-B is generated from S-D-E with partial path distances 96, partial path S-D-E-B can 

be deleted it’s partial-path distance of 96 is more than that of the shortest complete path S-A-B-G. 

44 
42 

S 

A 
D 

63 55 D 

80 
83 

83 

G 

71 65 A E X 

96 

X 

X X 

B 

C E B 

X 
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Figure 4.4:    branch-and-bound search with dynamic programming algorithm explanation. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

4.2.1 A* search  

The A* procedure is Branch-and-Bound search, with an Underestimate of 

remaining distance, combined with the Dynamic Programming principle. If the 

estimate of remaining distance is a lower-bound on the actual distance, then A* 

produces optimal solutions generally, the estimate may be assumed to be lower-

bound estimate, unless specifically stated otherwise, implying that A* solutions 

are normally optimal.  
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SABE 
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SABG 
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1 

Extend SS to D,A 

Extend SA to B,D 

Terminate SDEB, Can’t extend SABC 

 

 Terminate SABE, Extend SDE to B  

Terminate SAD, Extend SD to A, 

E  

Terminate SDA, Extend SAB to C,E,G  

SD 
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SAB 
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SABC 
:83 

 

SABG 
:83 

 

SDEB 
:96 

 

SABG 
:83 

 

SUCCESS 

SAD 
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The A* algorithm operates in the same manner as Branch-and-Bound 

search augmented by underestimate, so it employs the following function to 

calculate underestimate of total path length, ut = (total path length): 

u (total path length) = d (already traveled) + u (distance remaining), 

 

where d = d(already traveled) is the known distance already traveled, and where 

ur = u(distance remaining) is underestimate of the distance remaining (Coppin, 

2004).  

The A* procedure differs from the basic branch-and-bound with a lower-

bound estimate procedure only in the steps shown in bold italic bellow: 

_______________________________________________________________ 

To conduct A* search, 

1- Form a one-element queue consisting of a zero-length path that contains only 

the root node. 

2- Until the first path in the queue terminates at the goal node or the queue is 

empty, 

2.1- Remove the first path from the queue; create new paths by extending 

the first path to all the neighbors of the terminal node. 

2.2- Reject all new paths with loops. 

2.3- Add the remaining new paths, if any, to the queue. 

2.4- If two or more paths reach a common node, delete those paths 

except the one that reaches the common node with the minimum 

cost. 
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2.5- Sort the entire queue by the sum of the path length and a lower-bound 

estimate of the cost remaining, with least-cost paths in front. 

3- If the goal node is found, announce success; otherwise, announce failure.  

______________________________________________________ 

 
Now, if the straight-line distances from each city to the goal is as shown in 

Figure (4.5) are considered as an underestimates of distances remaining (ur), 

and the already traveled distances to each city from the source = (d) is considered 

as shown in Figure (4.6), then Figure (4.7) will show how A* will determine that 

the path S-A-B-C-G is optimal. The numbers beside the nodes are the 

underestimate of total path length (ut). 

     (ut)=  accumulated distances(d)  +  underestimates of distances 

remaining(ur).  

 

 

 

 

  

46 85 

76 

21 

30 

23 

S 
A B 

C 

D 

E G 

Figure 4.5: Example of 

straight- line distances 

between each city and the 

goal = (ur). 
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Figure 4.7:  A* Search Example. 
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Figure 4.6:  Example of already traveled distances at each city = (d).  

133 94 

S 

A D 

1- In the first step, D and A are generated from S, at node A, Aut = d (48) + ur(46) = 94, 

at node D, Dut = d (57) + ur(76) = 133, A is the node from which to search, because A 

underestimated path length is 94, which is shorter than that for D, 133.  

133 

S 

A 
D 

156 96 B D 
X 

2- Expanding A leads to partial paths S-A-B, with an underestimated path length 

=d(66)+ur(31)= 96, and to partial path S-A-D, with a underestimated path length= 

d(81)+ur(76)=156, partial path S-A-D can be deleted as its partial-path distance of 156 is more 

than that of. S-D (133). 
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133 

D 

118 121 131 

C E G 

S 

A 

156 B D 

X 

3- Now S-A-B is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to partial paths S-A-B-C, with an underestimated 

path length =d(98)+ur(23)= 121,S-A-B-E with an underestimated path length =d(97)+ur(21)= 118,  

and to partial path S-A-B-G, with a underestimated path length= d(131)=131, where S-A-B-G is 

the shortest complete path, but to be absolutely sure, all partial paths with partial path distances less 

than 131 must be expanded.  

133 

D 

183 

131 
C E G 

S 

A 

156 B D 

D 

121 

X 

4- Now S-A-B-E is the partial path to extend, as it is the partial path with the minimum 

underestimated path length =118. This expansion leads to partial path S-A-B-E-D, with an 

underestimated path length =d(117)+ur(76)= 183, partial path S-A-B-E-D can be deleted because 

its partial-path distance of 183 is more than that of. S-D (133).  

X 
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Figure (4.8) will explain the algorithm of A* search, according to the previous 

example: 
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5- Finally S-A-B-C is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total 

distance of 120. No partial path has a lower-bound distance so low, so no further search is required. 

X 

X 

121 
118 

96 

94 

120 G 

133 

D 

183 

131 C E G 

S 

A 

156 B D 

D 

X 

X 

SS:0 

3 

2 

0 

1 

Extend SS to D,A 

Extend SA to B,D 

 to  

SAB 
: 96 

 

SD 
: 133 

 

SAD 
: 156 

 
SABE 

: 118 

 

SABC 
:121  

 

SABG 
: 131 

 

SD 
: 133 

 

Terminate SAD,Extend SAB to C,E,G 

  

Extend SABE to D 

! 

SA 
: 94 

 

SD 
: 133 

 

4 
SABC 

: 121 

 

SABG 
: 131 

 

SD 
: 133 

 

SABED 
: 183 

 
Terminate SABED,Extend SABC to G 

S! 

5 
SABCG 

: 120 

 

SABG 
: 131 

 

SD 
: 133 

 
SUCCES

S! 



www.manaraa.com

 

113 

 

 
Figure 4.8:  A* Search / algorithm  explanation.  

 

4.3 Search : Fuzzy Method 
 

The suggested “A* Searching Technique Using Fuzzy Underestimate” is the 

same as the existing “ A* Searching Technique Using Crisp Underestimate” in all 

its steps, unless the suggested method deals with underestimation of the 

remaining distance (Ur) as a fuzzy data , taking into consideration the assumption 

that “the underlying graph is crisp and the parameters related to its arcs are fuzzy 

numbers.” (Blue et al,2002). 

A fuzzy underestimate of the distance remaining yields a  fuzzy 

underestimate of total path length, uft (total path length):   

uft (total path length) = d (already traveled) + ufr (distance remaining), 

 

Were d (already traveled) is the known distance already traveled, and 

ufr(distance remaining) is a fuzzy underestimate of the distance remaining. 

Fuzzy underestimation for the remaining distance (fuzzy data) can be processed 

according to the previous steps, as shown in Fgure (3.8), and as detailed in 

section (3.2.1). 
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The suggested procedures of  A* search with a fuzzy lower-bound estimate are 

different from the basic A* search procedures only in the steps shown in italic 

bellow: 

 
To conduct A* search with a fuzzy lower-bound estimate,  

1- Form a one-element queue consisting of a zero-length path that contains only 

the root node. 

2- Until the first path in the queue terminates at the goal node or the queue is 

empty, 

2.1- Remove the first path from the queue; create new paths by extending 

the first path to all the neighbors of the terminal node. 

2.2- Reject all new paths with loops. 

2.3- Determine fuzzy lower-bound estimate of the cost remaining as 

follows: 

2.3.1- Take fuzzy estimate of new paths = “approx. a”. 

2.3.2- Denote TFN for “ approx. a“ by the appropriate notation (a1 , a , 

a2). 

2.3.3- Choose a fixed “decision - parameter “ α in (0,1), according to 

degree     of  searcher confidence in estimation. 

2.3.4- Take a fuzzy lower-bound estimate of the cost remaining 

        ( lower  α-cut of  “approx. a” ) = 1 , where:      

                                    )aa(a 111     

2.4- Add the remaining new paths, if any, to the queue. 
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2.5- If two or more paths reach a common node, delete those paths except 

the one that reaches the common node with the minimum cost. 

2.6- Sort the entire queue by the sum of the path length and a lower-bound 

estimate of the cost remaining, with least-cost paths in front. 

3- If the goal node is found, announce success; otherwise, announce failure.  
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The following flow chart also explain the procedure of A* search with a fuzzy 

lower-bound estimate as shown in Fgure (4.9): 

 

Initialise Q to contain a 
single partial path 

containing the start 
state. 

Does Q’s first path 

terminate at the goal? 

Is Q 

Remove first path from 
Q and expand. 

Add remaining new paths, if any, to the queue. 

Terminate 
with failure 

Terminate with 
success. Return first 

path as solution. 

Y 

Y 
N 

N 

Take fuzzy estimate of new 
paths = “approx. a” 

Denote TFN for “approx. a” by 
the appropriate notation (a1, a, a2). 

Choose a fixed  

“decision – parameter” α 

Take a fuzzy lower-bound estimate 
of the cost remaining 

 

Sort the entire queue by the sum of the path length 
and a fuzzy lower-bound estimate of the cost 

remaining, with least-cost paths in front. 
 

If two or more paths reach a common node, delete 
those paths except the one that reaches the common 

node with the minimum cost. 

Figure 4.9: flow chart procedure of A* search with a fuzzy lower-bound estimate.  
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When a searcher is working out a path on a highway map, straight-line 

distance is guaranteed to be an underestimate, but if searcher has better source 

of information about the remaining distance estimation  , then search procedure 

will be more efficient. 

Confidence about underestimation of remaining distance may vary from 

case to case; so   also will vary according to degree of searcher confidence in 

value of underestimation. 

4.4 Applications 
 

We will consider two applications as examples for the proposed A* with 

fuzzy underestimate algorithm. 

 The first application will adopt the previous example which was explained 

for branch and bound augmented by crisp underestimate algorithm (Figure 4.6) 

as a random net application which will be explained in section 4.4.1.  

The second application will adopt the real roads between two major 

Jordanian cities as an example, which will be explained in section 4.4.2.  

4.4.1 Random net Application 
 

In the following example, if a decision–maker takes  a fixed TFN model slope 

as (a-3 , a , a+8), at each node he/she will take fuzzy estimate of remaining 

distance for new paths = “approx. a" from different information source = IS, 

choosing α according to the degree of searcher confidence in underestimation, 

taking a fuzzy lower-bound estimate of the cost remaining; )aa(a 111   , 

and finally he/she will add new paths, and sort the paths by the sum of the already 

traveled path length = d, and a fuzzy lower-bound estimate of the remaining 
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 distance = ufr  to choose the shortest path.  

Consider the following net, as shown in Figure (4.10). The traveler is at the 

node S, and intends to go to the node G. All possible routes are shown in the net 

graph, the number against each edge gives the actual distance of that route (node 

to node) in some unit. The traveler has no knowledge about the distance 

information, but the traveler records the distance he completed. 

 

 

 

  

 
 
 

 

Figure 4.11 shows the fuzzy estimates of distances remaining (ufr) from 

each city to the goal; Figure 4.13 shows how fuzzy underestimates of distances 

remaining helps to make the search more efficient, where A* search augmented 

by fuzzy underestimates determines  that the path S-A-B-C-G is optimal. The 

numbers beside the nodes are underestimate of total path length (uft). 

 (uft) = accumulated distances(d) + fuzzy lower-bound estimate of the cost remaining 

(α1).  

Fuzzy underestimates quickly push up the lengths associated with bad paths. In this 

example, fewer nodes are expanded than would be expanded with A*  search 

operating with crisp underestimates.  

  

32 

31 

22 

65 10 57 

48 
18 

32 

S 

A B C 

D E G 

Figure 4.10: net graph with actual distance of each route. 
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Figure: 4.11 Example of fuzzy underestimates of distances remaining (ufr) between each 

city and the goal. 

Part of the tree, which must be explored by the proposed algorithm , will be 

as shown in Figure (4.12):- 

 

The problem can be solved by applying the proposed algorithm of section 4.2 as 

in the following example; Figure 4.13:- 

Figure 4.13:  Example for A* Search augmented by fuzzy underestimates. 
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D E G 

ufr = 83 

ufr = 75 

ufr = 131 ufr = 91  

ufr = 61 

ufr = 22 

120 

Figure 4.12: The explored Part of the tree. At each node there is, specific source for estimated 

information =IS, who (which) will give fuzzy cost underestimate of remaining distance = “approx. 

a" = a, decision maker will choose an appropriate α, TFN model, and lower α-cut for that node. 

IS = G citizen, ufr =22, α = 0.9, 
TFN(19, 22, 30), α1 = 21.7, 

uft =d(98)+ α1(21.7) = 119.7 

       

 

IS = Taxi driver, ufr =60, α = 0.7, 

TFN(57,  60,  68), α1 =59.1, 
uft =d(66)+ α1(59.1) = 125.1 

 

 

131 

IS = Old man, ufr =83, α = 0.5, 

TFN(80, 83, 91), α1 = 81.5 
uft =d(48)+ α1(81.5) = 129.5 

 

 

 

 

 

IS= Official sign, ufr =131, α = 0.95, 

TFN(128, 131, 139), α1=130.85 

uft =d(57)+ α1(130.85) =187.85 

IS = Taxi driver using path daily, 
 ufr=131, α = 0.9, 

TFN (128, 131, 139), α1 = 130.7,  

 uft =d(80)+ α1(130.7) = 201.7 
 

 

 

 

 

IS = D citizen, ufr =90, α = 0.8, 
TFN(87, 90, 98), α1 = 89.4, 

uft =d(97)+ α1(89.4) = 186.4 
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IS = Old man, ufr =83, α = 0.5, 

TFN(80, 83, 91), α1 = 81.5 
uft =d(48)+ α1(81.5) = 129.5 

 

IS= Official sign, ufr =131, α=1.95, 

TFN(128, 131, 139), α1=130.85 

uft =d(57)+ α1(130.85) =187.85 

S 

A D 

1- In the first step, as before, D and A are generated from S, at node A if  the information source 

(IS) was an old  man,  who gives  a fuzzy estimate of remaining distance as a = "approx. 83", 

decision maker can choose TFN as (81, 83, 91), and α=1.5 to produce α1=81.5 which will be add to 

the distance already traveled d = 48, to produce  the  fuzzy underestimate of total path length uft 

=129.5. 

While node D information source about remaining distance (IS) was an  Official sign with a = 

"approx. 131", decision maker can choose TFN as (128, 131, 139), and α = 1.95 to produce 

α1=131.85 which will be add to the distance already traveled d =57, to  produce  the  fuzzy 

underestimate of total path length uft = 187.85. 

A is the node from which to search, as A’s fuzzy underestimated path length is 129.5, 

which is shorter than that for D, 187.85.  

187.85 

 2- Expanding A leads to partial paths S-A-B, with a fuzzy underestimated path length of 125.1, 

and to partial path S-A-D, with a fuzzy underestimated path length of 201.7, partial path S-A-D 

can be deleted as its partial-path distance of 201.7 is more than that of. S-D (187.85) according to 

the dynamic programming procedure. 

S 

A 
D 

IS = Taxi driver  using path daily,  
ufr=131, α = 0.9,   TFN (128, 131, 139) 

, α1 = 130.7, uft =d(80)+ α1(130.7) = 201.7 
 

 

IS = Taxi driver, ufr =60, α = 0.7, 
TFN(57,  60,  68), α1 =59.1, 

uft =d(66)+ α1(59.1) = 125.1 
 

B D 

X 

3- Now S-A-B is the partial path to extend, as it is the partial path with the minimum fuzzy 

underestimated path length. This expansion leads to partial paths S-A-B-C, with a fuzzy 

underestimated path length of 119.7, partial path S-A-B-E, with a fuzzy underestimated path 

length of 186.4, and to the shortest complete path, S-A-B-G, with a total distance of 131, but to be 

absolutely sure, all partial paths with partial path distances less than 131 must be expanded. There 

is no need to extend the partial path S-A-B-E, as its partial-path distance of 186.4 is more than that 

of the complete path. 
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IS = D citizen, ufr =90, α = 0.8, 

TFN(87, 90, 98), α1 = 89.4, 

uft =d(97)+ α1(89.4) = 186.4 

IS = G citizen, ufr =22, α = 0.9, 

 TFN(19, 22, 30), α1 = 21.7, 

uft =d(98)+ α1(21.7) = 119.7 

       

131 
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Figure 4.14 will explain the algorithm of A* search augmented by fuzzy 

underestimate, according to the previous example: 

 
  

4- Finally S-A-B-C is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total 

distance of 121. No partial path has a lower-bound distance so low, so no further search is required. 

S 

A 
D 

D B 

G 121 
186.4 

C E 131 G 

187.85 

201.7 

X 

X 

X 

X 

121 

IS = G citizen, ufr =22, α = 0.9, 
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IS= Official sign, ufr =131, α = 0.95, 

TFN(128, 131, 139), α1=130.85 

uft =d(57)+ α1(130.85) =187.85 

IS = Taxi driver using path daily, 

 ufr=131, α = 0.9, 

TFN (128, 131, 139), α1 = 130.7,  
 uft =d(80)+ α1(130.7) = 201.7 
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uft =d(97)+ α1(89.4) = 186.4 
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Figure 4.14:  A*  Search augmented by fuzzy underestimate/ algorithm  explanation.  

 

4.4.2 Roads between Two Jordanian Cities Application 
 
In the following example, we will adopt a real life example; i.e. real roads 

between two major Jordanian cities; from Al Karak to Irbid according to an actual 

map for Jordan, as shown in Figure (4.15), where one can plan a route from Al 

Karak as start node (S) to Irbid as goal node (G) in the following map. 

Suppose that Mr. X is trying to find some path from Al Karak to Irbid using 

a highway map such as the one shown in Figure (4.15). The starting point in Al 

Karak denoted as Kr, which might be called (start node), and ending point in 

Irbid denoted as Ir, which might be called (goal node).  

The traveler is at Al Karak, and intends to go to Irbid. All possible routes 

are shown in the net graph; the number against each edge gives the actual 

distance of that route (node to node) in kilometers. The traveler has no 

knowledge about the distance information, but the traveler records the distance 

he completed. 
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Figure (4.16) shows the fuzzy estimates of remaining distances from each 

city to Irbid (the goal) , where the number against each edge gives the estimated 

distances in kilometers = (efr).  

 

 

 

 

 

 

With looping paths eliminated, one can arrange all possible paths from the 

start node S in a search tree. Figure (4.17) shows a search tree that consists of 

nodes denoting all possible paths that lead outward from the start node Al Karak 

(S) of the net shown in Figure (4.15) , the number against each edge gives the 

actual distance of that route (node to node) in kilometers.  

  

135 
173 
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170 

80 
60 

70 15 

Am Sw Zm 
Kr 

Db 

Qt 

St Rm 

Ir 

Figure 4.16: fuzzy estimates of remaining distances from each city (or 

intersection node) to Irbid =efr. 
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If a decision–maker takes  a fixed TFN model slope as (a-3 , a , a+8), at 

each node he/she will take fuzzy estimate of remaining distance for new paths 

= efr = “approx. a" from different information sources = IS, choose α according 

to degree  of  searcher confidence in estimation, take a fuzzy lower-bound 

estimate of the cost remaining; )aa(a 111   , and finally  he/she will add 

new paths, and sort the paths by the sum of the already traveled path length = 

d and the fuzzy lower-bound estimate of the remaining distance = ufr  to 

choose the shortest path.   

Figure 4.17: A search tree that consists of nodes denoting all possible paths that lead outward from 

the start node Al Karak (S) of the net shown in figure (4.15). 
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Figure (4.18) shows how fuzzy underestimates of distances remaining helps 

to make the search more efficient, where A* search augmented by fuzzy 

underestimates determines  that the path Kr- I4- Md- Am- Sw- Jr- Rm- Ir  is optimal. 

The numbers beside the nodes are underestimate of total path length (uft) =  

accumulated distances(d) + fuzzy lower-bound estimate of the cost remaining 

(α1). 

 Fuzzy underestimates quickly push up the lengths associated with bad 

paths. In this example, fewer nodes are expanded than would be expanded with 

A* search operating with crisp underestimates. 

Part of the tree, which must be explored by the proposed algorithm will be as 

shown in figure (4.18):- 

  

IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 
TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 

 

Figure 4.18: The explored part of the tree.At each node there is, specific source for estimated 

information =IS, who (which) will give fuzzy cost estimate of remaining distance = “approx. a" = a, 

decision maker will choose an appropriate α, TFN model, & lower α-cut for that node. 
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28 31 

Qt 

Kr 
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IS = Official sign, efr =135, α = 0.95, 
TFN(132, 135, 143), α1 =134.84, 

uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 
uft =d(34)+ α1(169.25) = 206.25 

 

IS=Farmer, efr =140, α = 0.4, 
TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 
TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 

 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 
uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 

TFN(37, 40, 48), α1 =39.1, 

uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 
TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 

 

IS = Taxi driver using path daily, efr =15, 
α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 

180 
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The problem can be solved by applying the proposed algorithm of section 4.2 as 
in the following example:- 
Figure 4.19:  Example for A*  Search augmented by fuzzy underestimates 

 

 

 

  

Db Qt 

Kr 

34 34 

IS = Bus Driver, efr =170, α = 0.75, 
TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 

IS=Farmer, efr =140, α = 0.4, 
TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

1- In the first step, as before, Db and Qt are generated from Kr(S), at node Db if the information 

source (IS) was a Farmer, who gives a fuzzy estimate of remaining distance as a = "approx. 140", 

decision maker can choose TFN as (137, 140, 148),and α=0.4 to produce α1=138.2 which will be 

added to the distance already traveled d = 34, to produce the fuzzy underestimate of total path 

length uft =193.85. 

While at node Qt information source about remaining distance (IS) was a Bus Driver with a = 

"approx. 170", decision maker can choose TFN as (167, 170, 178), and α = 0.75 to produce 

α1=169.25 which will be add to the distance already traveled d =34, to produce the fuzzy 

underestimate of total path length uft =206.25.  

Db  is the node from which to search, as Db ’s fuzzy underestimated path length is 193.85, which is 

shorter than that for Qt, 206.25.  

 

Md Zm 

Db  

28 31 

Qt  

Kr 

34 

206.25 

IS = Official sign, efr =135, α = 0.95, 
TFN(132, 135, 143), α1 =134.84, 

uft =d(62)+ α1(134.84) = 196.84 

 

IS = taxi Driver, efr =110, α = 0.7, 
TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 

 

 2- Expanding  Db leads to partial paths Kr- Db - Md, with a fuzzy underestimated path length of 

174.1, and to partial path Kr- Db - Zm, with a fuzzy underestimated path length of 196.84 

34 
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IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 

 

Md 

Am 

31 

Db 

28 31 

Kr 

34 34 

Zm 

196.84 
 

Qt 

206.25 

3- Now Kr- Db - Md is the partial path to extend, as it is the partial path with the minimum fuzzy 

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am with a fuzzy 

underestimated path length of 175.7.  

IS = Engineer, efr =60, α = 0.8, 
TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 

 

Md 

Am 

Sw 

I2 

13 

31 

Zm 
 

Db 

28 31 

Qt 
 

Kr 

34 34 

196.84 

206.25 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 
uft =d(118)+ α1(108.2) = 226.2 

 

4- Now Kr- Db - Md- Am is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am- Sw 

, with a fuzzy underestimated path length of 168.4, and to partial Kr- Db - Md- Am- Zg, with a 

fuzzy underestimated path length of 226.2. 

Kr- Db - Md- Am- Sw is the partial path to extend, as it is the partial path with the minimum 

underestimated path length. 
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IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 
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31 
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Qt 
 

Kr 

34 34 

IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 
uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 
uft =d(34)+ α1(169.25) = 206.25 

 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 
TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 

 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 
uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 
TFN(37, 40, 48), α1 =39.1, 

uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 
TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 

 

 5- Expanding Sw leads to partial paths Kr- Db- Md- Am- Sw- St, with a fuzzy underestimated 

path length of 193.85, and to partial path Kr- Db - Md- Am- Sw-Jr, with a fuzzy underestimated 

path length of 175.1 

IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 
uft =d(96)+ α1(79.7) = 175.7 
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34 34 

IS = Official sign, efr =135, α = 0.95, 
TFN(132, 135, 143), α1 =134.84, 

uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 
uft =d(34)+ α1(169.25) = 206.25 

 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 

TFN(107, 110, 118), α1 =109.1, 
uft =d(65)+ α1(109.1) = 174.1 

 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 

TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 

TFN(37, 40, 48), α1 =39.1, 
uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 

TFN(67, 70, 78), α1 =69.85, 
uft =d(124)+ α1(69.85) = 193.85 

 

IS = Taxi driver using path daily, efr =15, 

α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 

6- Now Kr- Db - Md- Am- Sw- Jr is the partial path to extend, as it is the partial path with the 

minimum underestimated path length. This expansion leads to  partial path Kr- Db - Md- Am –Sw 

-Jr- Rm, with a fuzzy underestimated path length of 178.7. 
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Figure (4.20) will explain the algorithm of A* search augmented by fuzzy 

underestimate, according to the previous example: 

  

IS = Engineer, efr =60, α = 0.8, 
TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 

 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 
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IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 
uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 
 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 

TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 
 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 
TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 

TFN(37, 40, 48), α1 =39.1, 
uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 

TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 
 

IS = Taxi driver using path daily, efr =15, 

α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 

180 

7- Now Kr- Db - Md- Am- Sw- Jr- Rm is the partial path to extend, as it is the partial path with the 

minimum underestimated path length. This expansion leads to a complete path, Kr- Db - Md- Am- 

Sw- Jr- Rm- Ir, with a total distance of 180. No partial path has a lower-bound distance  so low, so 

no further search is required. 
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IS = Engineer, efr =60, α = 0.8, 

TFN(57, 60, 68), α1 =59.4, 

uft =d(109)+ α1(59.4) = 168.4 
 

IS = Police Man, efr =80, α = 0.9, 

TFN(77, 80, 88), α1 =79.7, 

uft =d(96)+ α1(79.7) = 175.7 

 

Md 

Am 

Sw 

I2 

Jr 

Rm 

Ir 

St 

13 

27 

15 

28 

16 

31 

Zm 

Db 

28 31 

Qt 

Kr 

34 34 

IS = Official sign, efr =135, α = 0.95, 

TFN(132, 135, 143), α1 =134.84, 
uft =d(62)+ α1(134.84) = 196.84 

 

IS = Bus Driver, efr =170, α = 0.75, 

TFN(167, 170, 178), α1 = 169.25 

uft =d(34)+ α1(169.25) = 206.25 
 

IS=Farmer, efr =140, α = 0.4, 

TFN(1137, 140, 148), α1=138.2 

uft =d(34)+ α1(138.2) =193.85 

IS = taxi Driver, efr =110, α = 0.7, 

TFN(107, 110, 118), α1 =109.1, 

uft =d(65)+ α1(109.1) = 174.1 
 

Zg 

22 

IS = Old Man, efr =110, α = 0.4, 
TFN(107, 110, 118), α1 =108.2, 

uft =d(118)+ α1(108.2) = 226.2 

 

IS = Taxi driver, efr =40, α = 0.7, 
TFN(37, 40, 48), α1 =39.1, 

uft =d(136)+ α1(39.1) = 175.1 

 

IS = Official Sign, efr =70, α = 0.95, 

TFN(67, 70, 78), α1 =69.85, 

uft =d(124)+ α1(69.85) = 193.85 
 

IS = Taxi driver using path daily, efr =15, 

α = 0.9, TFN(12, 15, 23), α1 =14.7, 

uft =d(164)+ α1(14.7) = 178.7 
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Figure 4.20:  A*  Search augmented by fuzzy underestimate/ algorithm  explanation.  
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4.5 Conclusion 
 

In this chapter a new type of A* searching technique using fuzzy 

underestimates is proposed.  

Branch and Bound with dynamic programming is suitable when many paths 

converge on the same place. 

The A* procedure is suitable when both branch-and bound search with a 

guess and dynamic programming are good, where underestimates quickly push 

up the lengths associated with bad paths and dynamic programming drop 

redundant paths from the search queue. In figure (4.7), fewer nodes are 

expanded (10 nodes) than which may be expanded with branch-and- bound with 

dynamic programming search operating without underestimates. 

As in the last chapter, when analyzing search methods, Effective Branching 

Factor (b*) of each method is important to be examined to characterize the quality 

of a heuristic, where a well - designed heuristic would have a value of b* close 

to 1, by reducing the number of nodes that need to be examined in the search 

tree. 

When evaluating heuristic search strategies which are discussed in this 

chapter in term of EBF (b*) according to the results shown in table (4.1) and the 

corresponding chart shown in figure (4.21), we can note that: 

 DP principle has a high value of Effective Branching Factor when it is used 

without other algorithms, where b* = 1.81 in case of figure (4.3). 
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 A* search technique achieves better efficiency than B&B with dynamic 

programming search technique, where b* was decreased from 1.81 to 1.4 

because underestimation increases the efficiency of Branch and Bound 

with dynamic programming by enabling it to be more informed. 

 Using Fuzzy underestimate with A* search technique achieves better 

efficiency than using crisp underestimate, where b* was decreased from 

1.4 to 1.35 (in example of figure 4.13), and to 1.135 (in example of figure 

4.19) because fuzzy underestimation increases the efficiency of A* by 

enabling it to be more informed. 

 A* with Fuzzy Underestimate search technique achieves better efficiency 

than Branch and Bound Augmented by Fuzzy Underestimate search 

technique, because dynamic programming principle will drop redundant 

paths. 

 Using Fuzzy Underestimate with A* search technique as shown in case of 

figures (4.13) and (4.19) may not decrease b* much as using Fuzzy 

underestimate with B B search technique as shown in the case of figures 

(3.16) and (3.21), because A* search technique already achieves higher 

efficiency than B&B search technique.  

 In general adding Fuzzy underestimates can achieve better efficiency than 

adding crisp underestimates, where Effective Branching Factor for Fuzzy 

Underestimated A* is always better (less) than that for crisp algorithms 

especially when the number of nodes is high. Obviously the closer the 

Fuzzy underestimate is to the true remaining solution cost the more 

efficient the A* search will be. 
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 Fuzzy Underestimated A* search technique is complete (guaranteed to 

find a solution), optimal ( solution is guaranteed to be the best solution), 

nonredundant, and more informed than other algorithms, and have higher 

memory requirements (space complexity) comparable to other search 

techniques because it maintains all the generated nodes in the memory.  

Figure No. d N b* Type of Search 

4.3 3 11 1.81 B&B with Dynamic Programming 

4.7 4 10 1.403 A* 

4.13 4 9 1.352 A* with fuzzy Underestimation 
( Application 1) 

4.19 7 12 1.135 A* with fuzzy Underestimation 
( Application 2) 

 
Table 4.1: Evaluation of Heuristic A* search strategies in terms of effective branching 

factor (b*). 
 d: is the depth of the solution, 
 N: is the total number of nodes generated by each strategy for a particular problem. 

 A well - designed heuristic would have a value of b* close to 1. 
 

 
Figure 4.21: Evaluation of Heuristic A* search strategies in terms of effective branching 

factor (b*) according to the results shown in table (4.1)  
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5.1 Introduction 
In order to evaluate the performance of the proposed algorithms we will 

introduce a visual interface program called Searching Performance Analyzer 

(SPA), the source code for this program is shown in appendix (2). 

In this chapter six Searching techniques are to be analyzed using the 

simulation program (SPA) to compute the Number of Iterations, Time Complexity, 

Space Complexity, and Effective Branching Factor for each algorithm. 

This analysis process is to be carried out using six searching techniques, 

these techniques are Branch & Bound, Branch & Bound with Underestimation, 

Branch & Bound with dynamic programming, A*, Branch & Bound with Fuzzy 

Underestimation, and A* with Fuzzy Underestimation. 

Appendix (1) presents the pseudocode for each algorithm. Section (5.2) 

presents the simulated examples which goes through the simulation procedures 

step by step.  

5.2 Simulation 
This section presents the simulation for the proposed Searching techniques 

which are Branch & Bound with Fuzzy Underestimation, A* with Fuzzy 

Underestimation, and other related Searching techniques (Branch & Bound, 

Branch & Bound with Underestimation, Branch & Bound with dynamic 

programming, and A*). 

This simulation is programmed in Visual Basic Object Oriented 

Programming (OOP) language. 

  



www.manaraa.com

 

136 

 

5.2.1 Simulator Description 
Simulated search problems can be represented by a state space as a 

directed graph whose nodes correspond to problem situations and arcs to 

possible moves. The particular problem is defined by a start node and a 

goal condition. The solution of the problem corresponds to a path on the 

graph. Thus problem solving is reduced to searching for a path in a graph.  

In order to explain the many techniques available, one can look at the 

problem of route planning, in a particular route from a start node (S) to a goal 

node (G) as was shown previously in Figure (2.9), or a highway map such as the 

one shown in Figure (3.18) which represents the real life example between two 

major Jordanian cities (from Al Karak to Irbid) according to an official map of 

Jordan, where one can plan a route from Al Karak as a start node (S) to Irbid as 

a goal node (G).  

The graph data must be entered in special Nodes and Edges Screens, 

where the nodes information to be entered are: Start, Goal, and other 

Intermediate nodes, according to the net graph, then node’s cost information are 

entered using the Edges Screen as: expansion edges for each node with the 

corresponding cost (between each two nodes), straight line distance from each 

node to goal (as the crisp underestimated value), and fuzzy estimated distance 

from each node to goal with the corresponding Information Source type. 

Then with looping paths eliminated, the program will display  all possible 

paths from the start node S in a search tree that consists of nodes denoting all 

the possible paths that lead outward from the start node S of the net. 
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Finally the six search procedures will be executed by the program for that 

specific net, and the results of those procedures execution will be recorded and 

displayed (by Result Screen) in a table and four bar charts. 

Simulation steps and procedures are presented in the following sections. 

5.2.2 Examples 
In this sub section all examples will be introduced by adopting real roads 

between some major Jordanian cities; according to an official map of Jordan, 

which is shown in Figure (5.1), one can plan a route from a start node (S) to a 

goal node (G) using the map taken from (rjgc, April. 23, 2007). 

Results of each example are presented using a table and four bar charts 

representing (Number of Iterations, Time Complexity, Space Complexity, and 

Effective Branching Factor) for the six algorithms. 

The simulation program gives us the opportunity of choosing number of 

nodes to be used (6-20 nodes). 

All examples will use two main screens to enter node’s information and 

node’s cost information. The net will be converted automatically into a search tree 

by tracing out all possible paths until searcher cannot extend any of them without 

creating a loop. 

Each type of algorithm has two execution methods (Manual or Automatic) 

which can be chosen from the tree screen as shown in figure (5.8). When 

choosing Automatic run (A), all algorithms (techniques) will be displayed 

automatically and the results will be given directly in the result screen.  
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Manual run (M) can be chosen in cases where we would like to see detailed 

description of each step during the execution of a specific algorithm. 

By choosing Manual run (M) for one of the six algorithms, the type of search 

which has been chosen will be executed in steps to show the procedures of the 

chosen algorithm, while simultaneously the other algorithms (techniques) will be 

executed automatically and the comparison results for all six algorithms will be 

displayed in the result screen after completion of the manual run. 
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Figure 5.1: Jordan Map. 
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Example one: 

In the following example, we will consider the net  shown in figure (5.2) The 

traveler is at node S, and intends to go to node G. All possible routes are shown 

in the net graph; the numbers shown represent the actual distance of each route 

(node to node) in some unit. The traveler has no knowledge about the distance 

information, but the traveler records the distance he completed. 

 

 

 

 

 

 

To solve this net graph problem, we can use the simulation program (SPA) 

as shown in the following steps. 

Step 1- 

When the program starts, a splash screen will appear as shown in figure 

(5.3). 

  

21 

25 

22 

28 27 42 

44 
13 

29 

S 

A B C 

D E G 

Figure 5.2: net graph with actual distance of each route. 
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Figure 5.3: Splash Screen. 

 

After completing the necessary operations the Nodes Screen will be 

displayed as shown in figure (5.4).  
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Figure 5.4 Nodes Screen without Nodes Information. 

 

In the Nodes Screen the user must assign (Nodes Information) these are; 

number of nodes (from 6 to 20 nodes), start node, goal node, and intermediate 

nodes according to the required net graph, or he/she can use one of the available 

samples (sample 1 - sample 15). 

In this example we will choose (Sample 1) to deal with the graph given in 

figure (5.2). 

Step 2- 

On choosing (Sample 1), the empty fields (Nodes Information) will be filled 

by the program according to (Sample 1) pre-entered data as shown in figure (5.5). 

 

Figure 5.5: Nodes Screen after choosing (Sample 1). 
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Note that fields 1 to 7 have been filled with letters which represent (Sample 

1) net graph nodes. 

At the bottom of (Nodes Screen) four commands are available which can 

be used to display the following: 

Edges:   to display the next screen (Edges Screen), as shown in 

figure (5.7). 

Help:   to display the Help file (Read me) file. 

         About:     to display (About Screen), which gives a brief description about 
the         program. 

 
Exit:   to end the program. 

Step 3- 

After choosing Edges command, the next screen (Edges Screen) will 

appear as shown in figure (5.6). 
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Figure 5.6: Edges Screen without node’s cost information.  

In the (Edges Screen), the user must assign node’s cost information in the 

empty fields which are: 

1- (To Node) field : expansion edges for each node 

2- (Edge Cost) field: cost of the corresponding edge., , and with the 

corresponding Information Source type. 

 

3- (e. to Goal-S.L.) field: Straight Line distance from each node to goal as 

the crisp underestimated value. 

4- (e. to Goal-est.) field: fuzzy estimated distance from each node to goal. 

5- (Information Source) field: choose one of ten choices which are pre-

determined as: 

“Map” which corresponds to α = 0.95, “Official Sign” which corresponds to α = 

0.95, 

“Police Man” who corresponds to α = 0.95, “G Citizen” who corresponds to α = 

0.90, 

“Person Using The Path Daily” who corresponds to α = 0.90, “Taxi Driver using 

The Path Daily” who corresponds to α = 0.90, “Previous Expert” who corresponds 

to α = 0.80, “Other City Citizen” who corresponds to α = 0.60, “Taxi Driver” who 

corresponds to α = 0.70, and “Old Man” who corresponds to α = 0.50. 

In our example the empty fields will be filled by the program according to 

(Sample 1) pre-entered data as shown in figure (5.7). 
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Figure 5.7: Edges Screen after choosing (Sample 1). 

Note that at the bottom of (Edges Screen) three choices are available which 

can be used as follows:  

Nodes: to display the previous screen (Nodes Screen). 

Tree:    to display the next screen (Tree Screen). 

Exit:     to end the program. 

In case of modification of data user can go back to (Nodes Screen) by 

choosing (Nodes) command. 

Step 4 - 

To continue, choose (Tree) command, where the net will be converted 

automatically into a search tree as shown in figure (5.8) by tracing out all possible 

paths from the start node S of the net until program cannot extend any of them 

without creating a loop.  
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Note that the numbers illustrated on the tree have been explained as shown 

in the associated text boxes. 

 
 
Figure 5.8: Tree Screen after choosing (Sample 1). 

To the top left corner of the screen you will find names of the six algorithms 

which will be executed and type of execution for each technique, Manual or 

Automatic, where type of algorithm and execution method must be chosen. 

On choosing Automatic run (A), all algorithms (techniques) will be executed 

automatically and the results will be given directly in the result screen.  

When choosing Manual run (M) for any of the six algorithms, the type of 

search which has been chosen will be executed step by step to show the 

algorithm procedures, while all other algorithms (techniques) will be carried out 

simultaneously. The comparison results will be given in the result screen after the  

  

α  

d(already traveled)  

u(total path length)= d(already traveled) 

+u(distance remaining) 

uft = d (already traveled) + α1  

Edge cost 

 
Ur (S.L. estimation to goal) 

efr (fuzzy estimation to goal) 
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completion of the manual run steps. 

In this example (Sample 1) we will choose the Manual (M) run of “Branch & 

Bound Search with dynamic programming”. 

Figures (5.9 – 5.20) show the effect of using “Branch & Bound Search with 

dynamic programming”, on the map-traversal problem (Sample 1), where the red 

colored numbers beside the nodes denote the length of each path (cost) = d 

(already traveled), red colored nodes denote explored nodes, blue colored lines 

denote paths of reached nodes, dark red colored X denotes canceled nodes, and 

green colored lines denote the final path. 

A short message will appear on each screen to inform users which node to 

be considered or to be canceled next. All paths are cut off quickly, leaving only 

the optimal path, S-D-E-F-G. 
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Figure 5.9: Tree Screen using Branch & Bound Search with dynamic programming, on the 
map-traversal problem (Sample 1). 1-In the first step, the red colored nodes (A and D) and 
the associated red colored numbers (42 and 44) denote the explored nodes and the length 
of each path. The Short message informs users that node A is to be considered next. 

 

Figure 5.10: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1). 2-Partial path S-A denoted by the blue colored 
line is therefore selected for expansion . The Short message informs users that node D 
is to be cancelled next. 
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Figure 5.11: Tree Screen using Branch & Bound Search with dynamic programming , on the 
map-traversal problem (Sample 1), 3- Next, S-A-B and S-A-D are generated from S-A with partial 
path distances of 55 and 63, partial path S-A-D will be deleted because its partial-path distance 

of 63 is more than that of S-D (44). The dark red colored X denotes canceled node. The Short 

message informs users that node D is to be considered next. 
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Figure 5.12: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 4- Now S-D, with a partial path distance of 44, is 
expanded, leading to partial paths S-D-A and S-D-E. The Short message informs users 
that node A is to be cancelled next. 
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Figure 5.13: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 5- At this point, partial path S-D-A can be deleted 
because its partial-path distance of 65 is more than that of S-A-B (55). The Short message 
informs users that node B is to be considered next. 
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Figure 5.14: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 6-Then expanding S-A-B , leads to S-A-B-C and S-
A-B-G with partial path distances of 84, and 83. The Short message informs users that 
node E is to be considered next. 
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Figure 5.15: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 7- Then expanding S-D-E , leads to S-D-E-B with 
partial path distance of 96. The Short message informs users that node B is to be cancelled 
next. 
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Figure 5.16: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 8- Now S-D-E-B can be deleted because its partial-
path distance of 96 is more than that S-A-B (55).The Short message informs users that 
node G is to be considered next. 
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Figure 5.17: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 9- Now the complete path S-A-B-G is generated 
from S-A-B. The Short message informs users that node C is to be cancelled next. 
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Figure 5.18: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), 10-Then partial path S-A-B -C can be deleted 
because its partial-path distance of 84 is more than that of the shortest complete path S-
A-B-G (83). The Short message informs users that the final path S-A-B-G is to be 
considered next. 
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Figure 5.19: Tree Screen using Branch & Bound Search with dynamic programming , on 
the map-traversal problem (Sample 1), ), 11-  Finally S-A-B-G is the final shortest complete 
path because there are no other partial paths to be expanded, where the green colored line 
denotes the final path. 

 

At the top right corner of the screen you can find three commands 

On choosing (Results) command, the next screen (Results Screen) will 

display the results as shown in figure (5.20). 
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Figure 5.20: Results Screen using Branch & Bound Search with dynamic programming , 
on the map-traversal problem (Sample 1). 

 

On completion of the manual run steps the six searching techniques will run 

automatically and the comparison results will be given in the result screen, where 

the six searching techniques will be analyzed by computing the Number of 

Iterations, Time Complexity (ms), Space Complexity (B), and Effective Branching 

Factor for each algorithm. 

Results of these procedures will be displayed in a table and four bar charts 

as shown in figure (5.20). 
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Example Two: 

In the following example, we will consider the following highway map as 

shown in figure (5.21) which represents the real life roads between two major 

Jordanian cities from Ras an Nakab (Nq) to Amman (Am) according to the 

official map of Jordan which is shown in figure (5.1), where one can plan a route 

from Ras an Nakab as start node (S) to Amman as goal node (G)  

All possible routes are shown in the graph; the number against each edge 

gives the actual distance of that route (node to node) in some unit. The traveler 

has no knowledge about the distance information, but the traveler records the 

distance he completed. 

When the program starts, a splash screen will appear temporarily, then 

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4). 

In this example (Sample 2: Jordanian Cities - From Ras Nakab to Amman) 

represented by the net graph of figure (5.21) has been chosen. 
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On choosing (Sample 2), data of net graph of Figure (5.21) will be loaded 

into the program,  then all necessary steps were followed using the setup screens 

to activate the example. 

The results graph of this run are as given in Figure 5.22. 
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Figure 5.21: net graph from Ras an Nakab (Nq) to  

Amman (Am) with actual distance of each route. 
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Figure 5.22: Results Screen using Branch & Bound Search with Fuzzy underestimation, 
on the map-traversal problem (Sample 2). 

 

Example Three: 

In the following example, we will consider the following highway map as 

shown in figure (5.23) which represents the real roads between two major 

Jordanian cities from Tafila (Tf) to Azraq (Az) according to the official map of 

Jordan which is shown in figure (5.1), where one can plan a route from Tafila as 

start node (S) to Azraq as goal node (G)  

All possible routes are shown in the graph; the number against each edge 

gives the actual distance of that route (node to node) in some unit. The traveler 

has no knowledge about the distance information, but the traveler records the 
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 distance he completed. 

When the program starts, a splash screen will appear temporarily then 

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4). 

In this example (Sample 5: Jordanian Cities - From Tafila to Azraq) 

represented by the net graph of figure (5.23) has been chosen. 

 

On choosing (Sample 5), data of net graph of figure (5.23) will be loaded 

into the program, then all necessary steps were followed using the setup screens 

to activate the example. 
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The results graph of this run are as given bellow (figure 5.24): 

 

 

Figure 5.24: Results Screen using A* Search with Fuzzy underestimation, on the map-
traversal problem (Sample 5). 

Example Four: 

In the following example, we will consider the following highway map as 

shown in figure (5.25) which represents the real roads between two major 

Jordanian cities from Ras an Nakab (Rn) to Azraq (Az) according to the official 

map of Jordan which is shown in figure (5.1), where one can plan a route from 

Ras an Nakab as start node (S) to Azraq as goal node (G)  
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All possible routes are shown in the graph; the number against each edge 

gives the actual distance of that route (node to node) in some unit. The traveler 

has no knowledge about the distance information, but the traveler records the 

distance he completed. 

When the program starts, a splash screen will appear temporarily then 

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4). 

In this example (Sample 5: Jordanian Cities - From Ras Nakab to Azraq) 

represented by the net  graph of figure (5.25) has been chosen. 
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On choosing (Sample 3), data of net graph of figure (5.25) will be loaded 

into the program, then all necessary steps were followed using the setup screens 

to activate the example. 

The results graph of this run are as given bellow (figure 5.26):  

 

Figure 5.26: Results Screen using Branch and Bound Search with Fuzzy 

underestimation, on the map-traversal problem (Sample 3). 

Example Five: 

In the following example, we will consider the following highway map as 

shown in figure (5.27) which represents the real roads between two major 

Jordanian cities from Qatrana (Qt) to Irbid (Ir) according to the official map of 

Jordan which is shown in figure (5.1), where one can plan a route from Qatrana 
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 as start node (S) to Irbid as goal node (G)  

All possible routes are shown in the graph; the number against each edge 

gives the actual distance of that route (node to node) in some unit. The traveler 

has no knowledge about the distance information, but the traveler records the 

distance he completed. 

When the program starts, a splash screen will appear temporarily then 

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4). 

In this example (Sample 4: Jordanian Cities - From Qatrana to Irbid) 

represented by the net  graph of figure (5.27) has been chosen. 
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On choosing (Sample 4), data of net graph of figure (5.27) will be loaded 

into the program, then all necessary steps were followed using the setup screens 

to activate the example. 

The results graph of this run are as given bellow (figure 5.28):  

 

Figure 5.28: Results Screen using A* Search, on the map-traversal problem (Sample 4). 

 

Example Six: 

In the following example, we will consider the following highway map as 

shown in figure (5.29) which represents the real roads between two major 

Jordanian cities from Karak (Kr) to Azraq (Az) according to the official map of 

Jordan which is shown in figure (5.1), where one can plan a route from Karak as 

  



www.manaraa.com

 

168 

 

 start node (S) to Azraq as goal node (G)  

All possible routes are shown in the graph; the number against each edge 

gives the actual distance of that route (node to node) in some unit. The traveler 

has no knowledge about the distance information, but the traveler records the 

distance he completed. 

When the program starts, a splash screen will appear temporarily then 

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4). 

In this example (Sample 15): Jordanian Cities - From Karak to Azraq) 

represented by the net  graph of figure (5.29) has been chosen. 

 

On choosing (Sample 15), data of net graph of figure (5.29) will be loaded 

into the program, then all necessary steps were followed using the setup screens 

to activate the example. 

The results graph of this run are as given bellow (figure 5.30):  
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Figure 5.30: Results Screen using Branch and Bound Search with Crisp Underestimation, 
on the map-traversal problem (Sample 15). 
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5.3. Simulation Survey: 
 
The following tables and line charts show results when executing the 

program for different examples; according to an official map of Jordan, which was 

shown in Figure (5.1). 

Six Searching techniques were analyzed by computing the Number of 

Iterations, Time Complexity, Space Complexity, and Effective Branching Factor 

for each algorithm. 

The analysis process is carried out for six searching techniques, which are 

Branch & Bound, Branch & Bound with Underestimation, Branch & Bound with 

dynamic programming, A*, Branch & Bound with Fuzzy Underestimation, and A* 

with Fuzzy Underestimation. 
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 Number of Iterations: Table(5.1) shows Number of Iterations for six 

Searching techniques when the simulation was run for different examples. 

Table 5.1: Comparison of Number of Iterations for various search techniques, where B&B denotes 
Branch & Bound, DB&B denotes Branch & Bound with dynamic programming, UB&B denotes 
Branch & Bound with Underestimation, FB&B denotes Branch & Bound with Fuzzy 
Underestimation, A* denotes A*, and FA* denotes A* with Fuzzy Underestimation. 
 

Number of Iterations 

Example 
Name of search technique 

B&B DB&B UB&B FB&B A* FA* 

S-G 8 5 3 3 3 3 

Nq-Am 24 11 8 8 8 8 

Nq-AZ 24 11 7 3 7 3 

Qt-Ir 17 7 4 4 4 4 

Tf-Az 22 9 10 5 7 5 

Ir-Am 6 6 5 4 5 4 

Rm-Am 4 4 3 3 3 3 

Mn-Am 13 9 5 5 5 5 

Jf-Am 15 10 5 5 5 5 

Jd-Am 10 6 3 3 3 3 

Tf-Am 10 6 3 3 3 3 

Zm-Ir 8 5 3 3 3 3 

Db-Ir 8 5 3 3 3 3 

Kr-Ir 16 7 5 4 5 4 

kr-Az 145 6 6 3 5 3 

Jr-Az 7 5 2 2 2 2 

Jd-Az 8 6 4 4 4 4 

Db-Az 7 6 2 2 2 2 

Ir-Az 5 4 2 2 2 2 

Az-Ir 5 3 2 2 2 2 

Tf-Ir 29 8 7 5 7 5 

Jf-Ir 15 8 3 3 3 3 

Am-Ir 3 3 2 2 2 2 

Kr-Am 6 5 3 3 3 3 

Zm-Am 2 2 4 4 4 4 

Qt-Am 5 4 2 2 2 2 

Db-Am 3 3 2 2 2 2 

Az-Zg 3 3 3 3 3 3 

Md-Ir 8 6 3 3 3 3 



www.manaraa.com

 

172 

 

The following line chart shows comparison of Number of Iterations for various 

search techniques according to different independent examples. 

Figure 5.31 shows that Number of iterations for B&B increases as number of 

expanded nodes has been increased.  

Figure 5.31 (Line chart): Comparison of Number of Iterations for four crisp search techniques. 
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 Time Complexity:  Table(5.2) shows Time Complexity (ms)for six 

Searching techniques when the simulation was run for different examples. 

Table 5.2: Comparison of  Time Complexity for various search techniques. 
 

Search time (ms) 

Example 
Name of search technique 

B&B DB&B  UB&B FB&B  A*  FA*  

S-G 117 58 42 42 44 34 

Nq-Am 495 141 151 145 143 117 

Nq-AZ 495 141 120 36 116 32 

Qt-Ir 269 65 55 55 61 49 

Tf-Az 363 99 169 74 86 62 

Ir-Am 65 66 56 47 60 43 

Rm-Am 35 35 28 28 30 26 

Mn-Am 210 101 68 68 76 60 

Jf-Am 196 114 70 70 78 62 

Jd-Am 143 62 42 42 48 36 

Tf-Am 141 59 42 42 48 36 

Zm-Ir 91 45 36 36 40 42 

Db-Ir 91 45 36 36 40 32 

Kr-Ir 245 66 64 55 64 49 

kr-Az 183 59 75 42 54 36 

Jr-Az 82 52 25 25 29 21 

Jd-Az 103 67 51 43 53 37 

Db-Az 100 75 19 19 21 17 

Ir-Az 62 46 25 25 27 21 

Az-Ir 60 33 25 25 27 21 

Tf-Ir 546 82 110 76 94 62 

Jf-Ir 224 80 42 42 46 36 

Am-Ir 26 27 19 19 21 17 

Kr-Am 67 48 36 36 40 32 

Zm-Am 17 17 25 25 25 25 

Qt-Am 56 38 25 25 29 21 

Db-Am 26 27 19 19 21 17 

Az-Zg 18 20 18 18 18 18 

Md-Ir 105 64 36 36 40 32 
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The following line charts show comparisons of Time Complexity for various 

search techniques according to different independent examples, where Time 

complexity for all search techniques increases as number of expanded nodes has 

been increased. 

Figure 5.32 shows that UB&B and A* achieve less Time complexity than B&B search 

technique. 

Figure 5.33 shows that FB&B and FA* achieve less Time complexity than UB&B and 

A* search techniques for all examples. 

Figure 5.32 (Line chart): Comparison of Time Complexity for three crisp search techniques.  

 

Figure 5.33 (Line chart): Comparison of Time Complexity for two crisp and two fuzzy search 
techniques. 
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Figure 5.34 shows that FB&B achieves less Time complexity than UB&B search 

technique, while figure 5.35 shows that FA* achieves less Time complexity than 

A* search technique for all examples. 

Figure 5.34 (Line chart): Comparison of Time Complexity for two search techniques. 

 
 
Figure 5.35 (Line chart): Comparison of Time Complexity for two search techniques. 
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 Space Complexity: Table (5.3) shows Space Complexity (Byte) for six 

Searching techniques when the simulation was run for different examples. 

Table 5.3: Comparison of Space Complexity for various search techniques. 
 

Search space(Byte) 

Example 
Name of search technique 

B&B DB&B UB&B FB&B A* FA* 

S-G 14 10 7 7 7 9 

Nq-Am 33 21 17 16 17 20 

Nq-AZ 33 21 14 16 14 8 

Qt-Ir 24 11 8 8 8 11 

Tf-Az 27 14 18 10 12 13 

Ir-Am 9 9 8 7 8 9 

Rm-Am 6 6 5 5 5 6 

Mn-Am 21 16 10 10 10 14 

Jf-Am 18 16 10 10 10 14 

Jd-Am 17 11 7 7 7 10 

Tf-Am 17 10 7 7 7 10 

Zm-Ir 12 8 6 6 6 8 

Db-Ir 12 8 6 6 6 8 

Kr-Ir 23 11 9 8 9 11 

kr-Az 18 10 11 7 9 10 

Jr-Az 11 8 5 5 5 7 

Jd-Az 13 10 8 7 8 8 

Db-Az 13 12 4 4 4 5 

Ir-Az 9 9 5 5 5 6 

Az-Ir 9 6 5 5 5 6 

Tf-Ir 36 13 13 10 13 13 

Jf-Ir 21 12 7 7 7 9 

Am-Ir 5 5 4 4 4 5 

Kr-Am 10 8 6 6 6 8 

Zm-Am 4 4 5 5 5 5 

Qt-Am 9 7 5 5 5 7 

Db-Am 5 5 4 4 4 5 

Az-Zg 4 5 4 4 4 4 

Md-Ir 13 10 6 6 6 8 
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The following line charts show comparisons of Space Complexity for various 

search techniques according to different independent examples, where Space 

complexity for all search techniques increases as number of expanded nodes has 

been increased. 

Figure 5.36 shows that UB&B and A* achieve less Space complexity than B&B 

search technique, and figure 5.37 shows that FB&B achieves less Space 

complexity than UB&B search technique for all examples. 

Figure 5.36 (Line chart): Comparison of Space Complexity for three crisp search techniques. 
 

 
 

Figure 5.37 (Line chart): Comparison of Space Complexity for two search techniques. 
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Figure 5.38 shows that FA* achieves less Space complexity than A* search 

technique, and figure 5.39 shows that FA* achieves less Space complexity than 

FB&B search technique for all examples. 

Figure 5.38 (Line chart): Comparison of Space Complexity for two search techniques. 

 
 
Figure 5.39 (Line chart): Comparison of Space Complexity for the proposed two fuzzy search 
techniques. 

 

space Complexity

0

5

10

15

20

25

S
p

a
c
e
 (

B
)

A* 

FA* 

Space Complexity

0

5

10

15

20

25

T
im

e
 (

m
s
)

FB&B 

FA* 

Example 

 

Example 

 



www.manaraa.com

 

181 

 

 Effective Branching Factor: Table (5.4) shows Effective Branching 

Factor for six Searching techniques when the simulation was run for 

different examples. 

Table 5.4: Comparison of  Effective Branching Factor for various search techniques. 

 

Effective Branching Factor 

Example 
Name of search technique 

B&B DB&B UB&B FB&B A* FA* 

S-G 0.51 0.62 0.33 0.33 0.33 0.33 

Nq-Am 0.69 0.47 0.4 0.37 0.4 0.37 

Nq-AZ 0.69 0.47 0.32 0.21 0.32 0.21 

Qt-Ir 0.55 0.37 0.2 0.2 0.2 0.2 

Tf-Az 0.6 0.51 0.65 0.32 0.42 0.32 

Ir-Am 0.26 0.26 0.2 0.13 0.2 0.13 

Rm-Am 0.21 0.21 0.1 0.1 0.1 0.1 

Mn-Am 0.49 0.35 0.32 0.32 0.32 0.32 

Jf-Am 0.42 0.37 0.18 0.18 0.18 0.18 

Jd-Am 0.62 0.37 0.33 0.33 0.33 0.33 

Tf-Am 0.62 0.32 0.33 0.33 0.33 0.33 

Zm-Ir 0.42 0.44 0.21 0.21 0.21 0.21 

Db-Ir 0.42 0.44 0.21 0.21 0.21 0.21 

Kr-Ir 0.53 0.37 0.26 0.2 0.26 0.2 

kr-Az 0.42 0.32 0.69 0.32 0.53 0.33 

Jr-Az 0.37 0.44 0.43 0.43 0.43 0.43 

Jd-Az 0.29 0.32 0.44 0.33 0.44 0.33 

Db-Az 0.47 0.42 0.15 0.15 0.15 0.15 

Ir-Az 0.53 0.44 0.43 0.43 0.43 0.43 

Az-Ir 0.53 0.21 0.43 0.43 0.43 0.43 

Tf-Ir 0.73 0.29 0.29 0.18 0.29 0.18 

Jf-Ir 0.49 0.42 0.33 0.33 0.33 0.33 

Am-Ir 0.43 0.43 0.15 0.15 0.15 0.15 

Kr-Am 0.62 0.44 0.21 0.21 0.21 0.21 

Zm-Am 0.15 0.15 0.1 0.1 0.1 0.1 

Qt-Am 0.53 0.33 0.43 0.43 0.43 0.43 

Db-Am 0.43 0.43 0.15 0.15 0.15 0.15 

Az-Zg 0.15 0.15 0.15 0.15 0.15 0.15 

Md-Ir 0.47 0.62 0.21 0.21 0.21 0.21 
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The following line charts show comparisons of Effective Branching Factor 

for various search techniques according to different independent examples, where 

EBF for B&B, UB&B, and A* search techniques increases as number of expanded 

nodes has been increased. Figure 5.40 shows that UB&B and A* achieve less EBF 

than B&B and DB&B search techniques, and figure 5.41 shows that FB&B achieves 

less EBF than UB&B search technique for all examples. 

Figure 5.40 (Line chart): Comparison of  Effective Branching Factor for four crisp search echniques. 

Figure 5.41 (Line chart): Comparison of  Effective Branching Factor for two search techniques. 
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Figure 5.42 shows that FA* achieves less EBF than A* search technique for all 

examples. 

Figure 5.42 (Line chart): Comparison of Effective Branching Factor for two search techniques. 
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Simulation program has been explained for the proposed Searching 

techniques which are Branch & Bound with Fuzzy Underestimation, and A* with 

Fuzzy Underestimation, and other related Searching techniques which are: B&B, 

B&B with Underestimation, B&B with dynamic programming, and A*. 

The results of each comparison when executing the program for a specific 

problem (example) will be shown in a table for Number of Iterations, Time 

Complexity, Space Complexity, and Effective Branching Factor for each of the six 

algorithms, and the results also will be shown in four bar charts each one of them 

represents one of the four factors for the six searching techniques. 

The analysis and simulation results show that Fuzzy A* and Fuzzy 

Underestimate B&B search techniques achieve better efficiency, Time 

Complexity, Number of Iteration, and Effective Branching Factor are better than 

all other searching techniques, while. 

Space Complexity for A* and Underestimated B &B are always more 

(worse) than those of other algorithms, while Space complexity for Fuzzy A* and 

Fuzzy Underestimated B&B are always less (better) than those of crisp A* and 

Underestimated B&B. 

Time complexity for Fuzzy A* is better (less) than that for Fuzzy 

Underestimated B&B, while Space complexity for Fuzzy A* is worse (more) than 

that for Fuzzy Underestimated B&B. 

  



www.manaraa.com

 

185 

 

6.1 Introduction 
Well-designed heuristic functions can play an important part in efficiently 

guiding a search process toward a solution. The purpose of a heuristic function 

is to guide the search process in the most profitable direction by suggesting 

which path to follow first when more than one is available: The more accurately 

the heuristic function estimates the true merits of each node in the search tree 

(or graph), the more direct the solution process. In the extreme, the heuristic 

function would be so good that essentially no search would be required. The 

system would move directly to a solution (Rich & Knight, 2000). 

Branch and Bound search augmented by underestimate and A* searching 

technique are effective heuristic principle guided Artificial Intelligence Problem-

Solving Techniques.  

The existing Branch & Bound augmented by underestimate and A* 

searching techniques are techniques that work well on precise data, but not on 

imprecise data, whereas data available are not always crisp in real life. 

The aim of this research is to deal with such data type and to deal with the 

imprecise data involved in different kinds of existing searching techniques in a 

more efficient way by applying fuzzy logic on Branch & Bound augmented by 

underestimate and A* searching techniques, where fuzzy logic is an appropriate 

tool to deal with uncertain and imprecise information, because fuzzy logic 

has a capability to express knowledge in the form of linguistic rules.  
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A search problem and its solution by the existing crisp method of branch and 

bound and A* search has been considered in this dissertation. We have proved 

that these methods can be improved by using fuzzy theory. Consequently a new 

method of B&B  and A* searching techniques with fuzzy underestimation to the 

available fuzzy information (using Triangular Fuzzy Number model) has been 

proposed to add Fuzzy Underestimation to the existing algorithms, thus a new 

improved version of searching techniques under uncertainty has been suggested  

to be helpful in many real life problems of computer science, especially in AI field. 

The corresponding algorithms have been given, and the algorithms have been 

explained by examples and applications.  

This chapter concludes the dissertation and presents comparisons with 

previous work. It provides analysis for the simulation results of the proposed 

algorithms. Future work will be explained in the last section. 
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6.2 Conclusions 
The proposed solution has been implemented and tested; the conclusions and 

recommendations of the researcher are as follows: 

6.2.1 Comparison between the Crisp Algorithms. 
1. Dynamic programming is preferable when many paths converge on the same 

place. 

2. Branch-and-bound search is preferable when the tree is big and bad paths turn 

distinctly bad quickly. 

3. Branch-and-bound search with a guess is preferable when there is a good 

lower-bound estimate of the distance remaining to the goal. 

4. The A* procedure is preferable when both branch-and bound search with a 

guess and dynamic programming are effective. 

5. Crisp B&B has high values for Number of iteration, Time complexity, Space 

complexity, and Effective Branching Factor when it is used without other 

algorithms as shown in Figures (5.31,33,36,40). 

6. Crisp B&B with Dynamic Programming principle also has high values for 

Number of iteration, Time complexity, Space complexity and Effective 

Branching Factor when it is used without other algorithms but in general it is 

still superior to Crisp B&B, as shown in Figure (5.31). 

7. B&B Augmented by Underestimate search technique achieve better efficiency 

than regular B&B search technique as shown in Figure (5.32), where 

underestimation increases the efficiency of B&B by enabling it to be more 

informed. 
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8. A* algorithm can be considered as one type of branch-and-bound algorithm but it is 

better than B&B, because dynamic programming improves its efficiency. 

6.2.2 Effect of Using the Underestimated Value. 
When analyzing the effect of using the Underestimated value we can 

observe that: 

1. Maximum underestimated values means more efficient search because the 

closer an underestimate to the true distance, the more efficiently the search 

(because, if there is no difference at all, there is no chance of developing any 

false movement); in other words if the guesses were perfect, this approach 

would keep you on the optimal path at all times. 

However, guesses are not perfect, and a bad overestimate somewhere along the 

true optimal path may cause you to wander away from that optimal path 

permanently.  

2. At the other extreme, an underestimate may be so poor as to be hardly better 

than a guess of zero (underestimate = 0), which certainly must always be the 

ultimate underestimate of remaining distance (it has no heuristic power and 

does not provide any guidance for the search).In fact; ignoring estimates of 

remaining distance altogether can be viewed as the special case in which the 

underestimate used is uniformly zero (underestimate of close to zero is of little 

Value).  

6.2.3 Effect of Using the Fuzzy Underestimated Value (α1) 
When analyzing the effect of using the Fuzzy Underestimated value (α1) we 

can observe that: 

1. Maximum value of α = 1(which must not be so) means that we take the 
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 estimated value as a crisp one without fuzzification, which turns Fuzzy A* or 

Fuzzy B&B to crisp ones.  

2. Minimum value of α = 0 means that there is no estimation, which turns Fuzzy 

B&B or Fuzzy A* to crisp B&B or crisp B&B with D.P. principle consequently. 

3. Good DM can make α more close to real value (optimal value), then solution 

will go directly to the goal (high efficiency) but as α decreases the efficiency 

will decrease but the goal guaranteed not to be overlooked, taking into 

consideration that in the worst case fuzzy underestimate will not be less than 

straight line distance , then it will be better than crisp underestimate in all 

cases(u straight line distance ≤ α < 1), where fuzzy underestimate is more 

informed than crisp underestimate. 

6.2.4 Comparison between the Proposed Algorithms and 
Previous Works. 
 

The analysis and simulation results show that: 

1- B&B Augmented by Fuzzy Underestimate search technique achieve better 

efficiency than B&B Augmented by Crisp Underestimate search technique as 

shown in Figures (5.34, 41), where fuzzy underestimation increases the 

efficiency of B&B Augmented by Underestimate enabling it to be more 

informed. 

2. A* with Fuzzy Underestimate search technique achieve better efficiency than A* 

with Crisp Underestimate search technique as shown in Figures (5.35, 42), 

where fuzzy underestimation increases the efficiency of A* enabling it to be 

more informed. 
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3. The analysis and simulation results show that Fuzzy Underestimated B&B and 

Fuzzy A* search techniques achieve a search time (Time complexity) less 

than that of the B&B and A* with crisp underestimate as shown in Figures 

(5.34, 35). 

4. Space complexity for Fuzzy A* and Fuzzy Underestimated B&B are always 

better (less) than those of crisp algorithms, as shown in Figures (5.37, 38) 

where fuzzy methods decreases Space complexity by enabling the algorithms 

to be more informed. 

5. Effective Branching Factor for Fuzzy A* and Fuzzy Underestimated B&B are 

always better (less) than those of crisp algorithms especially when number of 

nodes are high as shown in Figures (5.41, 42); fuzzy methods decreases 

Effective Branching Factor, where its value becomes closer to 1. 

6.2.5 Comparison between the two Proposed Algorithms. 
The analysis and the simulation results show that: 

1. B&B Augmented by Fuzzy Underestimate search technique is simpler than A* 

with Fuzzy Underestimate search technique with less space complexity, but 

with less efficiency (more time complexity) as shown in Figures (5.39, 33).  

2. A* with Fuzzy Underestimate search technique is more efficient than B&B 

Augmented by Fuzzy Underestimate search technique because we add D.P. 

but with more space complexity as shown in Figures (5.33, 39). 

3. Fuzzy A* achieves better(less) Time complexity than Fuzzy Underestimated 

B&B as shown in figure (5.33). 

4. Fuzzy A* has memory requirements (space complexity) comparable to Fuzzy 

Underestimated B&B as shown in Figure (5.39) as it maintains all the 
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 generated nodes in the memory.  

5. Both A* with Fuzzy Underestimate and B&B Augmented by Fuzzy 

Underestimate search techniques are complete, optimal, nonredundant, and 

well informed among all other algorithms. 

6. High efficiency Fuzzy A* or Fuzzy Underestimated B&B has no difference as 

both achieved nearly the maximum efficiency (goes directly to the goal). 

6.2.6 Effects of Time complexity, Space complexity, and 
Effective Branching Factor on Efficiency. 
 

When analyzing the effects of Time complexity, Space complexity, and 

Effective Branching Factor on Efficiency we observed the following: 

1. Efficiency is related directly to Time complexity, where efficiency increases as 

time complexity decreases; less time complexity means more efficiency for 

specific technique. 

2. Space complexity increased as Time complexity decreased in most cases, 

where higher efficiency related to higher Space complexity. 

3. One heuristic is more informed than another heuristic if a search method that 

uses it needs to examine fewer nodes to reach a goal. 

4. Less Effective Branching Factor for a specific search technique means that the 

search technique can find optimal paths with less work. 
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6.2.7 Expected drawbacks for the two Proposed 
Algorithms. 
1- A Bad Decision Maker can cause bad overestimated values, where a bad 

overestimate somewhere along the true optimal path may cause you to 

wander away from the optimal path permanently. Note, however, that a good 

Decision Maker with good underestimates cannot cause the right path to be 

overlooked, taking into consideration that in the worst case, fuzzy 

underestimate will not be less than straight line distance , then it must be 

better than crisp underestimate in all cases (u straight line distance ≤ α < 1). 

2- Fuzzy A* has a high Space complexity as crisp A* , due to adding Dynamic 

Programming Principle, where it may use all the available memory in a matter 

of minutes, but after that the search practically cannot proceed although the 

user would find it acceptable that the algorithm would run for hours or even 

days (Bratko, 1998). 

3- Unfortunately, although Fuzzy A* or Fuzzy Underestimated B&B algorithms 

are more efficient than others, they still require exponential time (like Crisp A* 

and Crisp Underestimated B&B). The exact amount of time they save for a 

particular problem depends on the order in which the paths are explored (Rich 

& Knight, 2000). 
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6.3 Future Work. 
Even though the research in this dissertation proved that the proposed fuzzy 

algorithms improve the efficiency of the existing crisp algorithms, further research 

can be done to improve or support the presented solution such as: 

1- Interval Valued Fuzzy Number model can be used in addition to Triangular 

Fuzzy Number model, where the Overestimated Value (α2) can be taken into 

consideration, to exclude some choices , in order to decrease search efforts. 

2- Other fuzzy models than Triangular Fuzzy Number like Trapezoidal Fuzzy 

Number can be suggested. 

3- Fuzzy logic can be used to consider more than one Source of Information and 

convert it to a single crisp value, where fuzzy logic can be used to associate 

different metrics so as to produce one corresponding crisp value. 

4- Triangular Fuzzy Number can be considered to be dynamic variable according 

to Source of Information or other variable conditions or parameters (rule of the 

thumb), while we considered it in our work as (a-3, a, a+3) to simplify the 

suggested algorithms. 

5- α-cut can be considered to be dynamic variable according to Decision Maker 

confidence in Source of Information, or other variable conditions, while we 

considered α as a constant value according to each specific Source of 

Information = (IS). 

7- Statistics can be combined with fuzzy logic for some uncertainties. 
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Appendix 1 
Simulation Pseudocodes: 

 
The pseudocodes for the six algorithms are presented bellow: 

1 Branch & Bound Search pseudocode 
 
The pseudocode for Branch & Bound Search technique will be introduced in this 
appendix, while the corresponding algorithm (procedure) was presented in 
section (3.2), Branch and Bound  Search algorithm explanation was detailed 
in figure(3.3), and a Branch and Bound  Search Example was detailed in 
figure(3.2). 
_______________________________________________________________
______ 

To conduct a branch-and-bound search:  
Initialize all vertices to "undiscovered." 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblt(j).ForeColor = vbRed 
          Else 
              lblt(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = v(i) 
             order = i 
          End If 
      Next i 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 2 To 63 
             If w(r) = True And v(r) >= v(order) Then 
                lblx(r).Visible = True 
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                goal = 0 
             ElseIf w(r) = True And v(r) < v(order) Then 
                    order1 = order 
                    order = r 
                    goal = 0 
             Else 
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
   Wend 
End If 

 

1 Branch & Bound Search with Underestimates pseudocode 
 
The pseudocode for Branch & Bound with Underestimates Search technique will 
be introduced in this appendix, while the corresponding algorithm (procedure) 
was presented in section (3.2.1), algorithm explanation was detailed in 
figure(3.7), and an example was detailed in figure(3.6). 

To conduct a branch-and-bound search with underestimates:  
Initialize all vertices to "undiscovered." 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblgg(j).ForeColor = vbRed 
          Else 
              lblgg(j).ForeColor = vbBlack 
          End If 
      Next j  
      For i = 2 To 63 
          If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = g(i) 
             order = i 
          End If 
      Next i 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
         End If 
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         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= g(order) Then 
                lblx(r).Visible = True 
                goal = 0 
             ElseIf w(r) = True And v(r) < g(order) Then 
                    goal = 0 
             Else 
                  goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
   Wend 
End If 

__________________________________________________________________
_ 
 

2 B&B Search with Fuzzy Underestimation pseudocode 
 
The pseudocode for Branch & Bound with Fuzzy Underestimates Search 
technique will be introduced in this appendix, while the corresponding algorithm 
(procedure) was presented in section (3.3), flow chart procedure is shown in 
figure (3.12), algorithm explanation is detailed in figure(3.17), and two 
applications (examples) is detailed in figure(3.16) as a random net example 
and in figure(3.22) as an example for real roads between two major 
Jordanian cities; from Al Karak to Irbid according to an official map of Jordan.  
 

To conduct a branch-and-bound search with fuzzy Underestimates:  
Initialize all vertices to "undiscovered." 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lbluft(j).ForeColor = vbRed 
          Else 
              lbluft(j).ForeColor = vbBlack 
          End If 
      Next j 
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            For i = 2 To 63 
          If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = uft(i) 
             order = i 
          End If 
      Next i 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue     
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= uft(order) Then 
                 lblx(r).Visible = True 
                goal = 0 
             ElseIf w(r) = True And v(r) < uft(order) Then 
                    goal = 0 
             Else 
                   goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
   Wend 
End If 

______________________________________________________
_ 
 
4 B&B Search with Dynamic Programming pseudocode 
 
The pseudocode for Branch & Bound with Dynamic Programming Search 
technique will be introduced in this appendix, while the corresponding algorithm 
(procedure) was presented in section (4.2), algorithm explanation is detailed 
in figure(4.4), and an example is detailed in figure(4.3). 
 

To conduct a Branch-and-Bound search with dynamic programming: 
Initialize all vertices to "undiscovered." 
goal = 0 
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While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblt(j).ForeColor = vbRed 
          Else 
              lblt(j).ForeColor = vbBlack 
          End If 
      Next j    
      For i = 2 To 63 
          If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = v(i) 
             order = i 
          End If 
      Next i 
      For p = 1 To 62 
          For q = 2 To 63 
              If ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or (w(q) 
= True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) < v(q) Then 
vbInformation, "Duplication") 
                 w(q) = False 
                 lblx(q).Visible = True 
                 lbl(q).ForeColor = vbBlack 
              ElseIf ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or 
(w(q) = True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) > v(q) 
Then 
vbInformation, "Duplication") 
                     w(p) = False 
                     lblx(p).Visible = True 
                     lbl(p).ForeColor = vbBlack 
              End If 
          Next q 
      Next p 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration6 = iteration6 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= v(order) Then 
                lblx(r).Visible = True 
                goal = 0 
             ElseIf w(r) = True And v(r) < v(order) Then 
                    goal = 0 
             Else 
  



www.manaraa.com

 

219 

 

 
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
   Wend 
End If 

__________________________________________________________ 
 

5 A* Search Technique pseudocode 
 
The pseudocode for A* Search Technique will be introduced in this appendix, 
while the corresponding algorithm (procedure) was presented in section (4.2.1), 
algorithm explanation is detailed in figure(4.8), and an example is detailed in 
figure(4.7). 
 

To conduct the A* search technique: 
Initialize all vertices to "undiscovered." 

goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblgg(j).ForeColor = vbRed 
          Else 
              lblgg(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = 

a(2))) Then 
             min = g(i) 
             order = i 
          End If 
      Next i 
      For p = 1 To 62 
          For q = 2 To 63 
              If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) < 

g(q) Then 
                 w(q) = False 
                 lblx(q).Visible = True 
              ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) 

> g(q) Then 
                     w(p) = False 
                     lblx(p).Visible = True 
              End If 
          Next q 
      Next p 
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      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
     If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= g(order) Then 
                 lblx(r).Visible = True 
                goal = 0 
             ElseIf w(r) = True And v(r) < g(order) Then 
                    goal = 0 
             Else 
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 

         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
   Wend 

End If  

__________________________________________________________ 
 

6 A* with Fuzzy Underestimates Search technique 
 

The pseudocode for A* with Fuzzy Underestimates Search technique will be 

introduced in this appendix, while the corresponding algorithm (procedure) was 
presented in section (4.3), flow chart procedure is shown in figure (4.9), 
algorithm explanation is detailed in figure(4.14), and two applications 
(examples) was detailed in figure(4.13) as a random net example and in 
figure(4.19) as an example for real roads between two major Jordanian 
cities; from Al Karak to Irbid according to an official map of Jordan.  
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To conduct the A* with  Fuzzy Underestimates search technique use the 
following: 
Initialize all vertices to "undiscovered." 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lbluft(j).ForeColor = vbRed 
           Else 
              lbluft(j).ForeColor = vbBlack 
          End If 
      Next j 
       
      For i = 2 To 63 
          If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = uft(i) 
             order = i 
           End If 
      Next i 
      For p = 1 To 62 
          For q = 2 To 63 
              If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) < uft(q) Then 
                 w(q) = False 
                 lblx(q).Visible = True 
              ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) > uft(q) 
Then 
                     w(p) = False 
                     lblx(p).Visible = True 
              End If 
          Next q 
      Next p 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= uft(order) Then 
                lblx(r).Visible = True 
                goal = 0 
             ElseIf w(r) = True And v(r) < uft(order) Then 
                    goal = 0 
             Else 
                 goal = 1 
             End If 
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         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
   Wend 
End If 
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Appendix 2 
Simulation code: 

 

'Go results screen with the six algorithms 
iteration3 = 0 
iteration4 = 0 
iteration5 = 0 
iteration6 = 0 
iteration7 = 0 
iteration8 = 0 
time3 = 0 
time4 = 0 
time5 = 0 
time6 = 0 
time7 = 0 
time8 = 0 
space3 = 0 
space4 = 0 
space5 = 0 
space6 = 0 
space7 = 0 
space8 = 0 
ebf3 = 0 
ebf4 = 0 
ebf5 = 0 
ebf6 = 0 
ebf7 = 0 
ebf8 = 0 

 

'Branch & Bound Search 
 
For i = 2 To 63 
    lin(i - 1).BorderColor = vbBlack 
    lbl(i).ForeColor = vbBlack 
Next i 
node = a(1) 
flag = False 
i = 2 
steps = 0 
lbl(1).ForeColor = &HC000& 
For j = 1 To 63 
    w(j) = False 
Next j 
For j = 1 To 63 
    lblt(j).ForeColor = vbBlack 
    lblgg(j).ForeColor = vbBlack 
    lbluft(j).ForeColor = vbBlack 
Next j 
For j = 1 To 63 
    lblx(j).Visible = False 
Next j 
iteration3 = 0 
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If lbl(2).Visible = True And lbl(3).Visible = True Then 
   lblt(2).ForeColor = vbRed 
   lblt(3).ForeColor = vbRed 
   lbl(2).ForeColor = vbRed 
   lbl(3).ForeColor = vbRed 
   time3 = time3 + 3 
   If v(2) <= v(3) Then 
      w(3) = True 
      lbl(3).ForeColor = vbRed 
      lin(1).BorderColor = vbBlue 
      lbl(2).ForeColor = vbBlue 
      time3 = time3 + 3 
      If lbl(4).Visible Then 
         w(4) = True 
         lbl(4).ForeColor = vbRed 
         time3 = time3 + 2 
      End If 
      If lbl(5).Visible Then 
         w(5) = True 
         lbl(5).ForeColor = vbRed 
         time3 = time3 + 2 
      End If 
   Else 
       w(2) = True 
       lbl(2).ForeColor = vbRed 
       lin(2).BorderColor = vbBlue 
       lbl(3).ForeColor = vbBlue 
       time3 = time3 + 3 
       If lbl(6).Visible Then 
          w(6) = True 
          lbl(6).ForeColor = vbRed 
          time3 = time3 + 2 
       End If 
       If lbl(7).Visible Then 
          w(7) = True 
          lbl(7).ForeColor = vbRed 
          time3 = time3 + 2 
       End If 
   End If 
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then 
       lblt(2).ForeColor = vbRed 
       lbl(2).ForeColor = vbRed 
       lin(1).BorderColor = vbBlue 
       lbl(2).ForeColor = vbBlue 
       time3 = time3 + 3 
       If lbl(4).Visible Then 
          w(4) = True 
          lbl(4).ForeColor = vbRed 
          time3 = time3 + 3 
       End If 
       If lbl(5).Visible Then 
          w(5) = True 
          lbl(5).ForeColor = vbRed 
          time3 = time3 + 3 
       End If 
End If 
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iteration3 = iteration3 + 1 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblt(j).ForeColor = vbRed 
             time3 = time3 + 2 
          Else 
              lblt(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = v(i) 
             order = i 
          End If 
      Next i 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration3 = iteration3 + 1 
      time3 = time3 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
            time3 = time3 + 2 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
            time3 = time3 + 2 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 2 To 63 
             If w(r) = True And v(r) >= v(order) Then 
                lblx(r).Visible = True 
                time3 = time3 + 2 
                space3 = space3 + 1 
                goal = 0 
             ElseIf w(r) = True And v(r) < v(order) Then 
                    order1 = order 
                    order = r 
                    goal = 0 
             Else 
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
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         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
         time3 = time3 + 2 
   Wend 
End If 
For i = 1 To 63 
    If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
       ebf3 = ebf3 + 1 
    End If 
Next i 
For i = 2 To 3 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath3 = 1 
        End If 
Next i 
For i = 4 To 7 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath3 = 2 
        End If 
Next i 
For i = 8 To 15 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath3 = 3 
        End If 
Next i 
For i = 16 To 31 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath3 = 4 
        End If 
Next i 
For i = 32 To 63 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath3 = 5 
        End If 
Next i 

 

'Branch & Bound Search with Crisp Underestimates 
 
For i = 2 To 63 
    lin(i - 1).BorderColor = vbBlack 
    lbl(i).ForeColor = vbBlack 
Next i 
node = a(1) 
flag = False 
i = 2 
steps = 0 
lbl(1).ForeColor = &HC000& 
For j = 1 To 63 
    w(j) = False 
Next j 
For j = 1 To 63 
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    lblt(j).ForeColor = vbBlack 
    lblgg(j).ForeColor = vbBlack 
    lbluft(j).ForeColor = vbBlack 
Next j 
For j = 1 To 63 
    lblx(j).Visible = False 
Next j 
iteration4 = 0 
If lbl(2).Visible = True And lbl(3).Visible = True Then 
   lblgg(2).ForeColor = vbRed 
   lblgg(3).ForeColor = vbRed 
   lbl(2).ForeColor = vbRed 
   lbl(3).ForeColor = vbRed 
   time4 = time4 + 3 
   If g(2) <= g(3) Then 

      w(3) = True 
      lbl(3).ForeColor = vbRed 
      lin(1).BorderColor = vbBlue 
      lbl(2).ForeColor = vbBlue 
      time4 = time4 + 3 
      If lbl(4).Visible Then 
         w(4) = True 
         lbl(4).ForeColor = vbRed 
         time4 = time4 + 2 
      End If 
      If lbl(5).Visible Then 
         w(5) = True 
         lbl(5).ForeColor = vbRed 
         time4 = time4 + 2 
      End If 
   Else 
       w(2) = True 
       lbl(2).ForeColor = vbRed 
       lin(2).BorderColor = vbBlue 
       lbl(3).ForeColor = vbBlue 
       time4 = time4 + 3 
       If lbl(6).Visible Then 
          w(6) = True 
          lbl(6).ForeColor = vbRed 
          time4 = time4 + 2 
       End If 
       If lbl(7).Visible Then 
          w(7) = True 
          lbl(7).ForeColor = vbRed 
          time4 = time4 + 2 
       End If 
   End If 
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then 
       lblgg(2).ForeColor = vbRed 
       lbl(2).ForeColor = vbRed 
       lin(1).BorderColor = vbBlue 
       lbl(2).ForeColor = vbBlue 
       time4 = time4 + 3 
       If lbl(4).Visible Then 
          w(4) = True 
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          lbl(4).ForeColor = vbRed 
          time4 = time4 + 2 
       End If 
       If lbl(5).Visible Then 
          w(5) = True 
          lbl(5).ForeColor = vbRed 
          time4 = time4 + 2 
       End If 
End If 
iteration4 = iteration4 + 1 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblgg(j).ForeColor = vbRed 
             time4 = time4 + 2 
          Else 
              lblgg(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = g(i) 
             order = i 
          End If 
      Next i 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration4 = iteration4 + 1 
      time4 = time4 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
            time4 = time4 + 2 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
            time4 = time4 + 2 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= g(order) Then 
                lblx(r).Visible = True 
                time4 = time4 + 2 
                space4 = space4 + 1 
                goal = 0 
             ElseIf w(r) = True And v(r) < g(order) Then 
                    goal = 0 
             Else 
                  
                 goal = 1 
             End If 
  



www.manaraa.com

 

219 

 

         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
         time4 = time4 + 2 
   Wend 
End If 
For i = 1 To 63 
    If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
       ebf4 = ebf4 + 1 
    End If 
Next i 
 
For i = 2 To 3 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath4 = 1 
        End If 
Next i 
For i = 4 To 7 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath4 = 2 
        End If 
Next i 
For i = 8 To 15 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath4 = 3 
        End If 
Next i 
For i = 16 To 31 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath4 = 4 
        End If 
Next i 
For i = 32 To 63 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath4 = 5 
        End If 
Next i 

 

'Branch & Bound Search with Fuzzy Underestimates. 
 
For i = 2 To 63 
    lin(i - 1).BorderColor = vbBlack 
    lbl(i).ForeColor = vbBlack 
Next i 
node = a(1) 
flag = False 
i = 2 
steps = 0 
lbl(1).ForeColor = &HC000& 
 
For j = 1 To 63 
    w(j) = False 
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Next j 
For j = 1 To 63 
    lblt(j).ForeColor = vbBlack 
    lblgg(j).ForeColor = vbBlack 
    lbluft(j).ForeColor = vbBlack 
Next j 
For j = 1 To 63 
    lblx(j).Visible = False 
Next j 
iteration5 = 0 
If lbl(2).Visible = True And lbl(3).Visible = True Then 
   lbluft(2).ForeColor = vbRed 
   lbluft(3).ForeColor = vbRed 
   lbl(2).ForeColor = vbRed 
   lbl(3).ForeColor = vbRed 
   time5 = time5 + 3 
   If uft(2) <= uft(3) Then 
      w(3) = True 
      lbl(3).ForeColor = vbRed 
      lin(1).BorderColor = vbBlue 
      lbl(2).ForeColor = vbBlue 
      time5 = time5 + 3 
      If lbl(4).Visible Then 
         w(4) = True 
         lbl(4).ForeColor = vbRed 
         time5 = time5 + 2 
      End If 
      If lbl(5).Visible Then 
         w(5) = True 
         lbl(5).ForeColor = vbRed 
         time5 = time5 + 2 
      End If 
   Else 
       w(2) = True 
       lbl(2).ForeColor = vbRed 
       lin(2).BorderColor = vbBlue 
       lbl(3).ForeColor = vbBlue 
       time5 = time5 + 3 
       If lbl(6).Visible Then 
          w(6) = True 
          lbl(6).ForeColor = vbRed 
          time5 = time5 + 2 
       End If 
       If lbl(7).Visible Then 
          w(7) = True 
          lbl(7).ForeColor = vbRed 
          time5 = time5 + 2 
       End If 
   End If 
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then 
       lbluft(2).ForeColor = vbRed 
       lbl(2).ForeColor = vbRed 
       lin(1).BorderColor = vbBlue 
       lbl(2).ForeColor = vbBlue 
       time5 = time5 + 3 
       If lbl(4).Visible Then 
          w(4) = True 
          lbl(4).ForeColor = vbRed 
          time5 = time5 + 2 
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       End If 
       If lbl(5).Visible Then 
          w(5) = True 
          lbl(5).ForeColor = vbRed 
          time5 = time5 + 23 
       End If 
End If 
iteration5 = iteration5 + 1 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lbluft(j).ForeColor = vbRed 
             time5 = time5 + 2 
          Else 
              lbluft(j).ForeColor = vbBlack 
          End If 
      Next j 
       
      For i = 2 To 63 
          If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = uft(i) 
             order = i 
          End If 
      Next i 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration5 = iteration5 + 1 
      time5 = time5 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
            time5 = time5 + 2 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
            time5 = time5 + 2 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= uft(order) Then 
                lblx(r).Visible = True 
                time5 = time5 + 2 
                space5 = space5 + 1 
                goal = 0 
             ElseIf w(r) = True And v(r) < uft(order) Then 
                    goal = 0 
             Else 
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
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If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
         time5 = time5 + 2 
   Wend 
End If 
For i = 1 To 63 
    If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
       ebf5 = ebf5 + 1 
    End If 
Next i 
For i = 2 To 3 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath5 = 1 
        End If 
Next i 
For i = 4 To 7 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath5 = 2 
        End If 
Next i 
For i = 8 To 15 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath5 = 3 
        End If 
Next i 
For i = 16 To 31 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath5 = 4 
        End If 
Next i 
For i = 32 To 63 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath5 = 5 
        End If 
Next i 

'Branch && Bound Search with Dynamic Programming. 
 
For i = 2 To 63 
    lin(i - 1).BorderColor = vbBlack 
    lbl(i).ForeColor = vbBlack 
Next i 
node = a(1) 
flag = False 
i = 2 
steps = 0 
lbl(1).ForeColor = &HC000& 
For j = 1 To 63 
    w(j) = False 
Next j 
For j = 1 To 63 
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    lblt(j).ForeColor = vbBlack 
    lblgg(j).ForeColor = vbBlack 
    lbluft(j).ForeColor = vbBlack 
Next j 
For j = 1 To 63 
    lblx(j).Visible = False 
Next j 
iteration6 = 0 
If lbl(2).Visible = True And lbl(3).Visible = True Then 
   lblt(2).ForeColor = vbRed 
   lblt(3).ForeColor = vbRed 
   lbl(2).ForeColor = vbRed 
   lbl(3).ForeColor = vbRed 
   time6 = time6 + 3 
   If v(2) <= v(3) Then 
      w(3) = True 
      lbl(3).ForeColor = vbRed 
      lin(1).BorderColor = vbBlue 
      lbl(2).ForeColor = vbBlue 
      time6 = time6 + 3 
      If lbl(4).Visible Then 
         w(4) = True 
         lbl(4).ForeColor = vbRed 
         time6 = time6 + 2 
      End If 
      If lbl(5).Visible Then 
         w(5) = True 
         lbl(5).ForeColor = vbRed 
         time6 = time6 + 2 
      End If 
   Else 
       w(2) = True 
       lbl(2).ForeColor = vbRed 
       lin(2).BorderColor = vbBlue 
       lbl(3).ForeColor = vbBlue 
       time6 = time6 + 3 
       If lbl(6).Visible Then 
          w(6) = True 
          lbl(6).ForeColor = vbRed 
          time6 = time6 + 2 
       End If 
       If lbl(7).Visible Then 
          w(7) = True 
          lbl(7).ForeColor = vbRed 
          time6 = time6 + 2 
       End If 
   End If 
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then 
       lblt(2).ForeColor = vbRed 
       lbl(2).ForeColor = vbRed 
       lin(1).BorderColor = vbBlue 
       lbl(2).ForeColor = vbBlue 
       time6 = time6 + 3 
       If lbl(4).Visible Then 
          w(4) = True 
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          lbl(4).ForeColor = vbRed 
          time6 = time6 + 2 
       End If 
       If lbl(5).Visible Then 
          w(5) = True 
          lbl(5).ForeColor = vbRed 
          time6 = time6 + 2 
       End If 
End If 
iteration6 = iteration6 + 1 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblt(j).ForeColor = vbRed 
             time6 = time6 + 2 
          Else 
              lblt(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = v(i) 
             order = i 
          End If 
      Next i 
      For p = 1 To 62 
          For q = 2 To 63 
              If ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or (w(q) 
= True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) < v(q) Then 
                 w(q) = False 
                 lblx(q).Visible = True 
                 time6 = time6 + 2 
                 space6 = space6 + 1 
                 lbl(q).ForeColor = vbBlack 
              ElseIf ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or 
(w(q) = True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) > v(q) 
Then 
                     w(p) = False 
                     lblx(p).Visible = True 
                     time6 = time6 + 3 
                     space6 = space6 + 1 
                     lbl(p).ForeColor = vbBlack 
              End If 
          Next q 
      Next p 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration6 = iteration6 + 1 
      time6 = time6 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
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            lbl(2 * order).ForeColor = vbRed 
            time6 = time6 + 2 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= v(order) Then 
                lblx(r).Visible = True 
                time6 = time6 + 2 
                space6 = space6 + 1 
                goal = 0 
             ElseIf w(r) = True And v(r) < v(order) Then 
                    goal = 0 
             Else 
                  
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
         time6 = time6 + 2 
   Wend 
End If 
For i = 1 To 63 
    If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
       ebf6 = ebf6 + 1 
    End If 
Next i 
For i = 2 To 3 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath6 = 1 
        End If 
Next i 
For i = 4 To 7 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath6 = 2 
        End If 
Next i 
For i = 8 To 15 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath6 = 3 
        End If 
Next i 
For i = 16 To 31 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath6 = 4 
        End If 
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Next i 
For i = 32 To 63 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath6 = 5 
        End If 
Next i 
 

'A* Search. 
 
For i = 2 To 63 
    lin(i - 1).BorderColor = vbBlack 
    lbl(i).ForeColor = vbBlack 
Next i 
node = a(1) 
flag = False 
i = 2 
steps = 0 
lbl(1).ForeColor = &HC000& 
For j = 1 To 63 
    w(j) = False 
Next j 
For j = 1 To 63 
    lblt(j).ForeColor = vbBlack 
    lblgg(j).ForeColor = vbBlack 
    lbluft(j).ForeColor = vbBlack 
Next j 
For j = 1 To 63 
    lblx(j).Visible = False 
Next j 
iteration7 = 0 
If lbl(2).Visible = True And lbl(3).Visible = True Then 
   lblgg(2).ForeColor = vbRed 
   lblgg(3).ForeColor = vbRed 
   lbl(2).ForeColor = vbRed 
   lbl(3).ForeColor = vbRed 
   time7 = time7 + 3 
   If g(2) <= g(3) Then 
      w(3) = True 
      lbl(3).ForeColor = vbRed 
      lin(1).BorderColor = vbBlue 
      lbl(2).ForeColor = vbBlue 
      time7 = time7 + 3 
      If lbl(4).Visible Then 
         w(4) = True 
         lbl(4).ForeColor = vbRed 
         time7 = time7 + 2 
      End If 
      If lbl(5).Visible Then 
         w(5) = True 
         lbl(5).ForeColor = vbRed 
         time7 = time7 + 2 
      End If 
   Else 
  



www.manaraa.com

 

227 

 

 
       w(2) = True 
       lbl(2).ForeColor = vbRed 
       lin(2).BorderColor = vbBlue 
       lbl(3).ForeColor = vbBlue 
       time7 = time7 + 3 
       If lbl(6).Visible Then 
          w(6) = True 
          lbl(6).ForeColor = vbRed 
          time7 = time7 + 2 
       End If 
       If lbl(7).Visible Then 
          w(7) = True 
          lbl(7).ForeColor = vbRed 
          time7 = time7 + 2 
       End If 
   End If 
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then 
       lblgg(2).ForeColor = vbRed 
       lbl(2).ForeColor = vbRed 
       lin(1).BorderColor = vbBlue 
       lbl(2).ForeColor = vbBlue 
       time7 = time7 + 3 
       If lbl(4).Visible Then 
          w(4) = True 
          lbl(4).ForeColor = vbRed 
          time7 = time7 + 2 
       End If 
       If lbl(5).Visible Then 
          w(5) = True 
          lbl(5).ForeColor = vbRed 
          time7 = time7 + 2 
       End If 
End If 
iteration7 = iteration7 + 1 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lblgg(j).ForeColor = vbRed 
             time7 = time7 + 2 
          Else 
              lblgg(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = g(i) 
             order = i 
          End If 
      Next i 
      For p = 1 To 62 
          For q = 2 To 63 
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              If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) < g(q) Then 
                 w(q) = False 
                 lblx(q).Visible = True 
                 time7 = time7 + 2 
                 space7 = space7 + 1 
              ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) > g(q) 
Then 
                     w(p) = False 
                     lblx(p).Visible = True 
                     time7 = time7 + 2 
                     space7 = space7 + 1 
              End If 
          Next q 
      Next p 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration7 = iteration7 + 1 
      time7 = time7 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
            time7 = time7 + 2 
         End If 
 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
            time7 = time7 + 2 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= g(order) Then 
                lblx(r).Visible = True 
                time7 = time7 + 4 
                space7 = space7 + 1 
                goal = 0 
             ElseIf w(r) = True And v(r) < g(order) Then 
                    goal = 0 
             Else 
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
         time7 = time7 + 2 
   Wend 
End If 
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For i = 1 To 63 
    If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
       ebf7 = ebf7 + 1 
    End If 
Next i 
For i = 2 To 3 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath7 = 1 
        End If 
Next i 
For i = 4 To 7 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath7 = 2 
        End If 
Next i 
For i = 8 To 15 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath7 = 3 
        End If 
Next i 
For i = 16 To 31 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath7 = 4 
        End If 
Next i 
For i = 32 To 63 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath7 = 5 
        End If 
Next i 

 

'A* Search with Fuzzy Underestimation. 
 
For i = 2 To 63 
    lin(i - 1).BorderColor = vbBlack 
    lbl(i).ForeColor = vbBlack 
Next i 
node = a(1) 
flag = False 
i = 2 
steps = 0 
lbl(1).ForeColor = &HC000& 
For j = 1 To 63 
    w(j) = False 
Next j 
For j = 1 To 63 
    lblt(j).ForeColor = vbBlack 
    lblgg(j).ForeColor = vbBlack 
    lbluft(j).ForeColor = vbBlack 
Next j 
For j = 1 To 63 
    lblx(j).Visible = False 
Next j 
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iteration8 = 0 
If lbl(2).Visible = True And lbl(3).Visible = True Then 
   lbluft(2).ForeColor = vbRed 
   lbluft(3).ForeColor = vbRed 
   lbl(2).ForeColor = vbRed 
   lbl(3).ForeColor = vbRed 
   time8 = time8 + 3 
   If uft(2) <= uft(3) Then 
      w(3) = True 
      lbl(3).ForeColor = vbRed 
      lin(1).BorderColor = vbBlue 
      lbl(2).ForeColor = vbBlue 
      time8 = time8 + 3 
      If lbl(4).Visible Then 
         w(4) = True 
         lbl(4).ForeColor = vbRed 
         time8 = time8 + 2 
      End If 
      If lbl(5).Visible Then 
         w(5) = True 
         lbl(5).ForeColor = vbRed 
         time8 = time8 + 2 
      End If 
   Else 
       w(2) = True 
       lbl(2).ForeColor = vbRed 
       lin(2).BorderColor = vbBlue 
       lbl(3).ForeColor = vbBlue 
       time8 = time8 + 3 
       If lbl(6).Visible Then 
          w(6) = True 
          lbl(6).ForeColor = vbRed 
          time8 = time8 + 2 
       End If 
       If lbl(7).Visible Then 
          w(7) = True 
          lbl(7).ForeColor = vbRed 
          time8 = time8 + 2 
       End If 
   End If 
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then 
       lbluft(2).ForeColor = vbRed 
       lbl(2).ForeColor = vbRed 
       lin(1).BorderColor = vbBlue 
       lbl(2).ForeColor = vbBlue 
       time8 = time8 + 3 
       If lbl(4).Visible Then 
          w(4) = True 
          lbl(4).ForeColor = vbRed 
          time8 = time8 + 2 
       End If 
       If lbl(5).Visible Then 
          w(5) = True 
          lbl(5).ForeColor = vbRed 
          time8 = time8 + 2 
       End If 
End If 
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iteration8 = iteration8 + 1 
goal = 0 
While goal = 0 
      min = 1000 
      For j = 1 To 63 
          If w(j) = True Then 
             lbluft(j).ForeColor = vbRed 
             time8 = time8 + 2 
          Else 
              lbluft(j).ForeColor = vbBlack 
          End If 
      Next j 
      For i = 2 To 63 
          If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2))) 
Then 
             min = uft(i) 
             order = i 
          End If 
      Next i 
      For p = 1 To 62 
          For q = 2 To 63 
              If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) < uft(q) Then 
                 w(q) = False 
                 lblx(q).Visible = True 
                 space8 = space8 + 1 
              ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) > uft(q) 
Then 
                     w(p) = False 
                     lblx(p).Visible = True 
                     space8 = space8 + 1 
              End If 
          Next q 
      Next p 
      w(order) = False 
      lin(order - 1).BorderColor = vbBlue 
      lbl(order).ForeColor = vbBlue 
      iteration8 = iteration8 + 1 
      time8 = time8 + 1 
      If order <= 31 Then 
         If lbl(2 * order).Visible = True Then 
            w(2 * order) = True 
            lbl(2 * order).ForeColor = vbRed 
            time8 = time8 + 2 
         End If 
         If lbl(2 * order + 1).Visible = True Then 
            w(2 * order + 1) = True 
            lbl(2 * order + 1).ForeColor = vbRed 
            time8 = time8 + 2 
         End If 
      End If 
      If lbl(order).Caption = a(2) Then 
         For r = 1 To 63 
             If w(r) = True And v(r) >= uft(order) Then 
                lblx(r).Visible = True 
                space8 = space8 + 2 
                goal = 0 
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             ElseIf w(r) = True And v(r) < uft(order) Then 
                    goal = 0 
             Else 
                  
                 goal = 1 
             End If 
         Next r 
      End If 
Wend 
If goal = 1 Then 
   check = order 
   While check > 1 
         lin(check - 1).BorderColor = &HC000& 
         lbl(check).ForeColor = &HC000& 
         check = Int(check / 2) 
         time8 = time8 + 2 
   Wend 
End If 
For i = 1 To 63 
    If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
       ebf8 = ebf8 + 1 
    End If 
Next i 
For i = 2 To 3 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath8 = 1 
        End If 
Next i 
For i = 4 To 7 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath8 = 2 
        End If 
Next i 
For i = 8 To 15 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath8 = 3 
        End If 
Next i 
For i = 16 To 31 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath8 = 4 
        End If 
Next i 
For i = 32 To 63 
        If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then 
           dpath8 = 5 
        End If 
Next i 
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Appendix 3 

Fuzzy Logic 

Examples where fuzzy logic is used 

 Automobile and other vehicle subsystems, such as ABS and cruise control (e.g. 
Tokyo monorail)  

 Air conditioners  
 The MASSIVE engine used in the Lord of the Rings films, which helped show huge 

scale armies create random, yet orderly movements  
 Cameras  
 Digital image processing, such as edge detection  
 Rice cookers  
 Dishwashers  
 Elevators  
 Washing machines and other home appliances  
 Video game artificial intelligence  
 Language filters on message boards and chat rooms for filtering out offensive text  
 Pattern recognition in Remote Sensing  
 Gambit System in Final Fantasy XII  

Fuzzy logic has also been incorporated into some microcontrollers and 
microprocessors, for instance, the Freescale 68HC12 
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Fuzzy Logic Sample applications 

 Agriculture  
 GIS  
 Image Processing (in Internet Archive)  
 Machine Learning  
 Machine Vision  
 Medicine  
 Model Validation  
 OCR  
 Robot Navigation  
 Shape Recognition  
 Telecommunications  
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