
www.manaraa.com

I

(Branch and Bound) and A* Search
Using Fuzzy Underestimates

Prepared by

Bilal M. Bader Eddeen Rababa'a

Supervisors

Prof. Naim Ajlouni
Prof. Ranjit Biswas

A dissertation submitted in partial fulfillment of
the requirements for the Degree of Doctor of

Philosophy in Computer Science.

Graduate College of Computer Studies
Amman Arab University for Graduate Studies

May, 2007

www.manaraa.com

II

www.manaraa.com

III

www.manaraa.com

IV

Acknowledgment

"All praises and thanks to ALLAH"

I would like to thank my supervisors Dr. Naim Ajlouni, and Dr. Ranjit

Biswas who encouraged and helped me very much to produce this

work; they were and are still my brothers.

Great thanks from my heart to my parents for their prayers, my wife

for her patience and support, my sons and daughters for their

patience too, and to my brothers, sisters, friends, and colleagues for

their encouragements.

Finally, I would like to thank all lecturers, administration, and staff of

Amman Arab University for Graduate Studies for their help and

support.

www.manaraa.com

V

Dedication

I dedicate this work to:

My Parents, Wife, Children, Brothers, Sisters, and Friends

www.manaraa.com

VI

Table of Contents…….. VI
List of Tables………. ... IX
List of Figures……….. .. X
List of Appendices……. ... XV
Acronyms and abbreviations ... XVI
Abstract……………. ... XVIII
Arabic Summary……… .. XX
Chapter One Introduction ... 1

1.1.Overview ... 1
1.1.1 Search Definition according to different fields. 1
1.1.2 Artificial Intelligence Definition, and Activities 2
1.1.3 Fuzzy Logic, and Fuzzy Logic Activities 4
1.1.4 Expert System, and Fuzzy Expert System 5
1.1.5 Search as a Problem-Solving Process 6
1.1.6 Heuristic Search Definition .. 7
1.1.7.1 Blind Artificial Intelligence Searching techniques 9
1.1.7.3 Optimal Artificial Intelligence Searching techniques ... 12
1.1.8 Previous Works of Fuzzy Shortest Path Problem in

Networks .. 13
1.2 Statement of the Problem .. 15
1.3 Goals of this Dissertation .. 16
1.4 Dissertation Contributions ... 17
1.5 Dissertation Structure .. 17

Chapter Two Preliminaries…….. ... 19
2.1 Fuzzy Set Theory ... 19
2.1.1 Crisp Sets and Fuzzy Sets .. 20
2.2.Illustrative example ... 26
2.1.2 Various Operations on Fuzzy Sets 26
2.1.3 Fuzzy Numbers ... 32
2.1.4 Hedge Definition ... 35
2.1.5 Fuzzy rule Definition ... 36
2.1.6 Fuzzy inference Definition .. 36

2.2 Search Techniques………………. 37

www.manaraa.com

VII

2-2-1 Blind Methods... 39
2.2.2 . Heuristically Informed Methods 51
2.2.3 Optimal Search ... 53
2.2.4 Properties of Search Methods .. 54
2.2.5 The effect of heuristic accuracy on performance 57

Chapter three (branch and bound) search 59
Using fuzzy underestimates ... 59

3.1 Introduction ... 59
3.2 Branch and Bound Search : Crisp Method 61
3.2.1 Adding Underestimates to (Branch and Bound) Search .. 67
3.3. Branch and Bound Search : Fuzzy Method 75
3.3.1 Fuzzy underestimate ... 76
3.4 Applications ... 83
3.4.1 Random net Application ... 83
3.4.2 Roads between Two Jordanian Cities Application 87
3.5 Conclusion .. 97

Chapter four searching technique using 100
Fuzzy underestimates ... 100

4.1 Introduction ... 100
4.2 Dynamic Programming ... 101
4.3 Search : Fuzzy Method .. 113
4.4 Applications ... 117
4.4.1 Random net Application ... 117
4.4.2 Roads between Two Jordanian Cities Application 122
4.5 Conclusion ... 132

chapter five…………… .. 135
performance evaluation and simulation 135

5.1 Introduction ... 135
5.2 Simulation .. 135
5.2.1 Simulator Description... 136
5.2.2 Examples .. 137
5.3. Simulation Survey: ... 170
5.4 Conclusion. .. 183

Chapter six Conclusions and future work 185
6.1 Introduction ... 185
6.2 Conclusions ... 187
6.2.1 Comparison between the Crisp Algorithms. 187

www.manaraa.com

VIII

6.2.2 Effect of Using the Underestimated Value. 188
6.2.3 Effect of Using the Fuzzy Underestimated Value (α1) . 188
6.2.4 Comparison between the Proposed Algorithms and

Previous Works. .. 189
6.2.5 Comparison between the two Proposed Algorithms. 190
6.2.6 Effects of Time complexity, Space complexity, and

Effective Branching Factor on Efficiency. 191
6.2.7 Expected drawbacks for the two Proposed Algorithms. 192
6.3 Future Work. .. 193

References……………. .. 194
Appendices……………. ... 204

www.manaraa.com

IX

Table

Number

Table Address Page

numbe

r

3.1 Evaluation of Heuristic B&B search strategies in terms
of effective branching factor (b*).

96

4.1 Evaluation of Heuristic A* search strategies in terms of
effective branching factor (b*).

128

5.1 Comparison of Number of Iterations for various search
techniques.

165

5.2 Comparison of Time Complexity for various search
techniques.

167

5.3 Comparison of Space Complexity for various search
techniques.

170

5.4 Comparison of Effective Branching Factor for various
search techniques.

173

www.manaraa.com

X

Figure

Number

 Figure Caption

Page

numbe

r

2.1 Set A and elements x, y and z of U. 22

2.2 Membership function A (t) of fuzzy set A. 26

2.3 Membership functions of the fuzzy sets A = “long travel
time” and “very long travel time”.

28

2.4 Membership functions of fuzzy sets A, B and A  B. 29

2.5 Membership functions of the fuzzy sets of the cause of

delay.

30

2.6 Membership functions of fuzzy sets A, B and A  B. 31

2.7 Trapezoidal fuzzy number {3, 4, 6, 7}. 33

2.8 LR-type fuzzy number. 35

2.9 A basic search problem. 39

2.10 A search tree made from a net. 40

2.11 Basic search techniques classification. 41

2.12 An example of depth-first search. 44

2.13 Depth-first search algorithm explanation. 45

2.14 An example of breadth-first search. 46

2.15 Breadth-first search algorithm explanation. 48

3.1 Branch-and-Bound Search. 61

3.2 Branch and Bound Search Example. 62

3.3 Branch and Bound Search algorithm explanation. 66

3.4 Example of straight- line distances between each city and
the goal.

68

3.5 Example of already traveled distances at each city. 69

3.6 B&B Search augmented by underestimates Example. 69

www.manaraa.com

XI

3.7 B&B Search augmented by underestimate/algorithm
explanation.

71

3.8 Fuzzy data processing steps. 73

3.9 TFN model for “approximately a” or “approx. a” 74

3.10 TFN model for “approx. 27”. 76

3.11 TFN model for “approx. 27” with α = 0.9. 77

3.12 Flow chart procedure of B&B search with a fuzzy lower-
bound estimate.

79

Figure

Number

Figure Caption Page

numbe

r

3.13 Net graph with actual distance of each route. 81

3.14 Example of fuzzy estimates of remaining distances
between each city and the goal.

82

3.15 The explored part of the tree. 82

3.16 Example of B&B Search augmented by fuzzy

underestimates.

82

3.17 B&B Search augmented by fuzzy underestimate/ algorithm
explanation.

84

3.18 Net graph from Karak to Irbid. 85

3.19 Fuzzy estimates of remaining distances. 86

3.20 A search tree of the net shown in figure (3.18). 87

3.21 The explored part of the tree. 88

3.22 Example of B&B Search augmented by fuzzy

underestimates.

89

3.23 B&B Search augmented by fuzzy underestimate/ algorithm
explanation.

93

3.24 Evaluation of Heuristic B&B search strategies in terms of
effective branching factor.

96

4.1 An illustration of the dynamic programming principle. 100

4.2 A more precisely illustration of the DPP. 101

4.3 B&B search with DPP Search Example. 102

www.manaraa.com

XII

4.4 B&B search with DP algorithm explanation. 104

4.5 Example of straight- line distances between each city and
the goal.

106

4.6 Example of already traveled distances at each city. 106

4.7 A* Search Example. 106

4.8 A* Search / algorithm explanation. 108

4.9 Flow chart procedure of B&B search with a fuzzy lower-
bound estimate.

111

4.10 Net graph with actual distance of each route. 113

4.11 Example of fuzzy underestimates of distances remaining
between each city and the goal.

113

4.12 The explored Part of the tree. 114

4.13 Example of A* Search augmented by fuzzy underestimates. 114

4.14 A* Search augmented by fuzzy underestimate/ algorithm
explanation.

116

4.15 Net graph from Karak to Irbid with actual distance of each

route.

117

Figure

Number

Figure Caption Page

numbe

r

4.16 Fuzzy estimates of remaining distances from each city to

Irbid.

118

4.17 A search tree of the net shown in figure (4.15). 119

4.18 The explored part of the tree. 120

4.19 Example of A* Search augmented by fuzzy

underestimates.

121

4.20 A* Search augmented by fuzzy underestimate/ algorithm
explanation.

125

4.21 Evaluation of Heuristic A* search strategies in terms of
effective branching factor.

128

5.1 Jordan Map. 133

www.manaraa.com

XIII

5.2 Net graph with actual distance of each route. 134

5.3 Splash Screen. 134

5.4 Nodes Screen without Nodes Information. 135

5.5 Nodes Screen after choosing (Sample 1). 136

5.6 Edges Screen without node’s cost information. 137

5.7 Edges Screen after choosing (Sample 1). 138

5.8 Tree Screen after choosing (Sample 1). 140

5.9 Tree Screen using DB&B (Sample 1), step 1. 141

5.10 Tree Screen using DB&B (Sample 1), step 2. 142

5.11 Tree Screen using DB&B (Sample 1), step 3. 143

5.12 Tree Screen using DB&B (Sample 1), step 4. 144

5.13 Tree Screen using DB&B (Sample 1), step 5. 145

5.14 Tree Screen using DB&B (Sample 1), step 6. 146

5.15 Tree Screen using DB&B (Sample 1), step 7. 147

5.16 Tree Screen using DB&B (Sample 1), step 8. 148

5.17 Tree Screen using DB&B (Sample 1), step 9. 149

5.18 Tree Screen using DB&B (Sample 1), step 10. 150

5.19 Tree Screen using DB&B (Sample 1), step 11. 151

5.20 Results Screen using DB&B (Sample 1). 152

5.21 Net graph from Ras an Nakab to Amman . 154

5.22 Results Screen using FB&B (Sample 2). 155

Figure

Number

Figure Caption Page

numbe

r

5.23 Tafila to Azraq. 156

5.24 Results Screen using FA* (Sample 5). 157

5.25 Net graph from Ras an Nakab to Azrak. 158

5.26 Results Screen using FB&B (Sample 3). 159

5.27 Net graph from Qatrana to Irbid. 160

www.manaraa.com

XIV

5.28 Results Screen using A* Search (Sample 4). 161

5.29 Net graph from Karak to Azraq. 162

5.30 Results Screen using CB&B (Sample 15). 163

5.31 Comparison of Number of Iterations for four crisp search
techniques.

166

5.32 (Line chart): Comparison of Time Complexity for three crisp
search techniques.

168

5.33 (Line chart): Comparison of Time Complexity for two crisp
and two fuzzy search techniques.

168

5.34 (Line chart): Comparison of Time Complexity for two search
techniques.

169

5.35 (Line chart): Comparison of Time Complexity for two search
techniques.

169

5.36 (Line chart): Comparison of Space Complexity for three
crisp search techniques.

171

5.37 (Line chart): Comparison of Space Complexity for two
search techniques.

171

5.38 (Line chart): Comparison of Space Complexity for two
search techniques.

172

5.39 (Line chart): Comparison of Space Complexity for the
proposed two fuzzy search techniques.

172

5.40 (Line chart): Comparison of Effective Branching Factor for
four crisp search techniques.

174

5.41 (Line chart): Comparison of Effective Branching Factor for
two search techniques.

174

5.42 (Line chart): Comparison of Effective Branching Factor for
two search techniques.

175

www.manaraa.com

XV

Appendix

Number

Appendix Title Page

numbe

r

1 Simulation Program pseudocodes 197

2 Simulation Program Codes 206

3 Fuzzy Logic 225

www.manaraa.com

XVI

Acronym/Abbrev. Description

A run Automatic run

A* A* Searching Technique

AAUGS Amman Arab University for Graduate Studies

ABS Antilock Braking System

AFLC Adaptive Fuzzy Logic Control

AI Artificial Intelligence

B Byte

B&B Branch and Bound Searching Technique

BFS Breadth-First Search

BM British Museum algorithm

BMP British Museum Procedure

BS Beam search

CA* Crisp A* Searching Technique

CB&B Crisp Branch & Bound Searching Technique

CDMA Code Division Multiple Access

DAG Directed AcyclicGraph

DB&B Branch & Bound with Dynamic Programming

DDP Discrete Dynamic Programming

DFID Depth-First Iterative Deepening

DFS Depth-First Search,

DM Decision Maker

DP Dynamic Programming

DPP Dynamic Programming Principle

EBF Effective Branching Factor

FA* A* with Fuzzy Underestimation

www.manaraa.com

XVII

FB&B Branch & Bound with Fuzzy Underestimation

FL Fuzzy Logic

FLC Fuzzy Logic Control

G Goal Node

G&T Generate and Test Searching Technique

GIS Geographic Information System

HC Hill-Climbing

HLS High-Level Synthesis

HS Heuristic Search

IEEE Institute of Electrical and Electronics Engineers

IS Source of Information

L-CPP Least-Cost Partial Path

LR-FN Left Right -type fuzzy number.

M run Manual run

ms Milli Second

NI Number of Iterations

OCR Optical Character Recognition

OERI Overall Existence Ranking Index

OOP Object Oriented Programming

S Start Node

SC Space Complexity

SPA Searching Performance Analyzer

TC Time Complexity

TFN Triangular Fuzzy Number

TSP Traveling Salesman Problem

UB&B Branch & Bound with Underestimation

VB Visual Basic

http://www.isprs.org/istanbul2004/comm6/papers/685.pdf
http://eprint.uq.edu.au/archive/00000625/02/paper13.pdf

www.manaraa.com

XVIII

(Branch and Bound) and A* Search Using
Fuzzy Underestimates

Prepared by
Bilal M. Bader Eddeen Rababa'a

Supervisors
Prof. Naim Ajlouni
Prof. Ranjit Biswas

Search in Artificial Intelligence is a problem-solving technique that

systematically explores a space of problem states. Branch and Bound (B&B) and

A* searching techniques are effective heuristic principle guided Artificial

Intelligence Problem-Solving Techniques. Fuzzy Logic is related to Expert

Systems, as an effective Expert systems tool which can deal with imprecise

and uncertain data and permit inexact reasoning.

A search problem and its solution by the existing crisp methods of “Branch and

Bound” and A* search have been considered in this work. We have observed that

these methods can be improved by using fuzzy theory.

 In this dissertation, new methods of B&B and A* searching techniques with

fuzzy underestimation to the available Fuzzy information have been proposed by

applying the Triangular Fuzzy Number Model in order to add Fuzzy

Underestimation to the existing algorithms. A new improved version of searching

techniques under uncertainty has been suggested. The corresponding algorithms

have been given, and each of the two algorithms have been explained in details

using two applications.

www.manaraa.com

XIX

A simulation program has been introduced to evaluate the performance of

the proposed algorithms. Six Searching techniques were analyzed and compared

by computing Number of Iterations, Time Complexity, Space Complexity, and

Effective Branching Factor for each algorithm. The proposed algorithms have

been implemented and tested; The analysis and simulation results showed that

Fuzzy Underestimated A* and Fuzzy Underestimated “Branch and Bound”

search techniques have achieved better efficiency, time complexity, and effective

branching factor than all other compared searching techniques. Fuzzy

underestimation increases the efficiency of A* and B&B Augmented by Crisp

Underestimation, enabling it to be more informed. Space complexity for Fuzzy

A* and Fuzzy Underestimated B&B is always less than that for crisp algorithms.

The analysis also proved that Time complexity for Fuzzy A* is better than that for

Fuzzy Underestimated B&B, but with more Space complexity.

This is because Fuzzy A* has more memory requirements compared to Fuzzy

B&B due to A* maintaining all the generated nodes in memory.

www.manaraa.com

XX

Branch and Bound and A* Search Using Fuzzy Underestimates

www.manaraa.com

XXI

www.manaraa.com

1

1.1.Overview

Since the beginning of creation, humans have always searched for

something or someone, starting by Adam when he searched for Eve. Till now

humans are still searching for things using everything they can afford.

This dissertation deals with applying Fuzzy Logic to enhance Branch and

Bound and A* Searching Techniques, which are two of the best Heuristic

problem solving techniques in Artificial Intelligence, while Fuzzy Logic is used

as an effective Expert System tool. All of these techniques will be discussed.

1.1.1 Search Definition according to different fields.

Search or searching in general is the act of trying to find something or

someone. It is possible to distinguish between two forms of search. One may

search for an item that is known to exist, with the intent to locate it. On the other

hand one may search for an item whose existence is uncertain, in order to

ascertain whether it exists or not. Searching can also be a metaphorical act, most

frequently in reference to intangibles such as memories and emotions (Wikipedia

Org., 2007).

Search is common, and can be used in many different areas of life, where

there are different meanings for search according to type or field of searching,

where search may mean the act and process of locating information in various

www.manaraa.com

2

 sources. For example, looking for a book in a library catalog (buffalo, Feb.

27, 2007), locating files scattered across the Internet, when you enter the engine

name or key words, popular ones include Yahoo, Lycos, Google and Alta Vista

(ncsu, Feb. 27, 2007), or locating information contained in a database by entering

words or numbers in a search box (siue, Feb. 27, 2007) , while search in CDMA

(Code Division Multiple Access) is a process where the phone scans the phase

space of the short code looking for valid signals (san, Feb. 27, 2007) .There are

a lot of different searching techniques, which are related to different fields like:

networks searching techniques (Li & Wu,2002), database search techniques (KU

Lib.2007), and web search techniques.

Artificial Intelligence (AI) is one of the most important fields in which search

is an important topic; where search in Artificial Intelligence is a problem-solving

technique that systematically explores a space of problem states, i.e., successive

and alternative stages in the problem-solving process. Examples of problem

states might include the different board configurations in a game or intermediate

steps in a reasoning process. This space of alternative solutions is then searched

to find an answer (Luger, 2005). Newell and Simon have argued that this is the

essential basis of human problem solving (Newell & Simon, 1976). Indeed, when

a chess player examines the effects of different moves or a doctor considers a

number of alternative diagnoses, they are searching among alternatives (Luger,

2005).

1.1.2 Artificial Intelligence Definition, and Activities
Intelligence is the ability to learn and understand, to solve

problems and to make decisions (Negnevitsky, 2002). While AI is a branch of

www.manaraa.com

3

 computer science dealing with computer systems implementing restricted

but definite part of human intelligence, particularly in knowledge acquisition,

perception, learning, reasoning (Bhatkar, 1994).

A machine is thought to be intelligent if it can achieve human-level

performance in some cognitive task. To build an intelligent machine, we

have to capture, organize and use human expert knowledge in some

problem area. (Negnevitsky, 2002). Intelligent Systems can help Experts to

solve difficult analysis problems. Artificial intelligence can help us to solve

difficult, real-world problems, creating new opportunities in business,

engineering, and many other application areas. The engineering goal of

artificial intelligence is to solve real-world problems; the scientific goal of

Artificial Intelligence is to explain various sorts of intelligence (Winston,

2000).

From an engineering perspective, the description of artificial intelligence

may be summarized as the study of representation and search through which

intelligent activity can be enacted on a mechanical device. This perspective has

dominated the origins and growth of AI (Negnevitsky, 2002).

The definition obviously lists the core activities of modern AI science, but

it is necessary that it be kept open for additional aspect of intelligent behavior

(Bhatkar, 1994).

Form the above definition it is evident that, while dealing with artificial intelligence,

not only the achievements of contemporary mathematics & computer science are

relevant, but also the results of disciplines from the humanities such as:

linguistics, cognitive science, psychology, etc., as well as psychology, neurology,

www.manaraa.com

4

 prosthetic, etc.. Apart from the character the AI might be given, the applied

artificial intelligence should be viewed as part of engineering, implementing the

intelligent systems for: natural language processing, speech understanding,

computer vision, autonomous robots, and domain expertizing (Including the

earlier systems for game-plying, theorem proving, general problems solving, etc.)

(Bhatkar, 1994).

1.1.3 Fuzzy Logic, and Fuzzy Logic Activities

Fuzzy sets were initiated by Zadeh (Zadeh, 1965). In (Zadeh,1973)

Zadeh made an extension of the concept of a fuzzy set by an interval-valued

fuzzy set (i.e. a fuzzy set with an interval-valued membership function) (Bustince

& Burillo, 1995). Since then, researchers have found numerous ways to

utilize this theory to develop new mathematical methods of fuzzy inference and

approximate reasoning (Baldwin, 1981; Gaines, 1976;Hellendoorn ,1992;

Yager, 1980; Zadeh, 1975; Sun & Hadipriono, 1995) . In 1991 there were (1400)

paper dealing with fuzzy systems (Rajagopalan, Washington, Rizzoni &

Guezennec, 2003).

Later many authors have used fuzzy systems in different fields of Science;

for example R. Sambuc (Sambuc, 1975) in Medical diagnosis in thyroidian

pathology, M. B. Gorzalczany (Gorzalczany, 1987) in approximate reasoning, I.

B. Turksen in Interval-valued logic, etc ..., these works and others show the

importance of these sets (Bustince & Burillo, 1995).

Fuzzy logic can be used in Automobile and other vehicle subsystems, such

as ABS, Air conditioning, Cameras, Digital image processing, Rice cookers,

http://en.wikipedia.org/wiki/Anti-lock_braking_system
http://en.wikipedia.org/wiki/Air_conditioning
http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Rice_cooker

www.manaraa.com

5

 Dishwashers , Elevators, Refrigerators,Washing machines (which sense

load size and detergent concentration and adjust their wash cycles accordingly)

and other home appliances, (Wikipedia, Ret. 22 February 2007), Agriculture, GIS

(Foley & Petry, 2000), Image Processing, Machine Learning, Machine Vision,

Medicine, Model Validation, OCR, Fuzzy Control and Fuzzy Robots (Fujisawa et

al, 1993; Saffiotti, Ruspini & Kurt,1993; Silva, 1995; Magdalena &

Monasterio,1993), Fuzzy Logic Control and Adaptive Fuzzy Logic Control

(AFLC) (e.g., BOLLOJU, 1995; Postlethwaite, 1994), Industrial Dryer (Bremner &

Postlethwaite, 1995), Coke Oven (Tobi & Hanatusa, 1992), Steam Generator

(Kuan, Lin & Hsu, 1992), Sludge Plant (Yu &Kandel, 1990), Oil Processing

(Aliyev &Tserkovnyy, 1990), Liquid Level (Graham & Newell,1988), Nuclear

Engineering (Ruan, 1995), Shape Recognition, Telecommunications, etc ...

Unlike two-valued Boolean logic, fuzzy logic is multi-valued. It deals

with degrees of membership and degrees of truth. Fuzzy logic uses the

continuum of logical values between 0 (completely false) and 1

(completely true). Instead of just black and white, it employs the spectrum

of colours, accepting that things can be partly true and partly false at the

same time. Classical binary logic now can be considered as a special case

of multi-valued fuzzy logic (Negnevitsky, 2002).

1.1.4 Expert System, and Fuzzy Expert System

Fuzzy Logic is related to Expert system as an effective Expert systems tool,

where Expert system can be defined as: a computer program capable of

performing at the level of a human expert in a narrow domain.Unlike

conventional programs, expert systems can deal with incomplete and

http://en.wikipedia.org/wiki/Dishwasher
http://en.wikipedia.org/wiki/Elevator
http://en.wikipedia.org/wiki/Refrigerator
http://en.wikipedia.org/wiki/Washing_machine
http://en.wikipedia.org/wiki/Detergent
http://en.wikipedia.org/wiki/Home_appliance
http://jds.fass.org/cgi/reprint/84/2/400.pdf
http://www.isprs.org/istanbul2004/comm6/papers/685.pdf
http://web.archive.org/web/20050425024310/http:/www.medialab.ntua.gr/medialab/Papers2003/2003-8/8.pdf
http://www.cs.wayne.edu/~mdong/papers/paper_fuzzytree.pdf
http://udel.edu/~ebenson/Journal_Articles/Benson_ASAE_2000_Adaptive_Edge_Detection.pdf
http://www3.sympatico.ca/alawnicz/PAGE0212.PDF
http://agron.scijournals.org/cgi/content/full/94/6/1222
http://eprint.uq.edu.au/archive/00000625/02/paper13.pdf
http://homepages.cae.wisc.edu/~ningyue/fuzzy.pdf
http://www.ensc.sfu.ca/~ljilja/ENSC833/Projects/chen/presentation.pdf

www.manaraa.com

6

 uncertain data and permit inexact reasoning. However, like their

human counterparts, expert systems can make mistakes when

information is incomplete or fuzzy. Fuzzy Expert System is a collection of

fuzzy rules and membership functions that are used to reason about data,

by using fuzzy logic instead of Boolean logic.(Negnevitsky, 2002).

Fuzzy logic is an excellent heuristic method to translate Experts’ knowledge

and rules into a computer program (Zhou & Mouftah, 2004). Fuzzy logic reflects

how people think. It attempts to model our sense of words, our decision

making and our common sense (Negnevitsky, 2002).

Fuzzy systems have the attribute of expressing knowledge in the form of

linguistic rules. They offer a possibility to implement expert human knowledge

and experience (Godjevac, 1995).

1.1.5 Search as a Problem-Solving Process

Search is a necessity to determine solutions to an enormous range of

problems (Coppin, 2004) P.72, and the process of search is fundamental to

the problem-solving process, where the problem can then be solved by

using the rules, in combination with an appropriate control strategy, to move

through the problem space until a path from an initial state to a goal state

is found (Rich & Knight, 2000).

In order to solve many hard problems efficiently; it is often necessary to

compromise the requirements of mobility and systematicity and to construct a

control structure that is no longer guaranteed to find the best answer but that

will almost always find a very good answer. Thus we introduce the idea of a

heuristic (Rich & Knight, 2000).

www.manaraa.com

7

1.1.6 Heuristic Search Definition

The word heuristic comes from the Greek word heuriskein, meaning "to

discover," which is also the origin of eureka, derived from Archimedes' reputed

exclamation, heurika (for "I have found"), uttered when he had discovered a

method for determining the purity of gold (Rich & Knight, 2000).

A heuristic is a technique that improves the efficiency of a search process,

possibly by sacrificing claims of completeness. Heuristics are like tour guides.

They are good to the extent that they point in generally interesting directions;

they are bad to the extent that they may miss points of interest to particular

individuals. But, on the average, they improve the quality of the paths that are

explored. Using good heuristics, we can hope to get good (though possibly no

optimal) solutions to hard problems, such as the traveling salesman, in less

than exponential time (Rich & Knight, 2000).

The purpose of a heuristic function is to guide the search process in the

most profitable direction by suggesting which path to follow first when more

than one path is available: The more accurately the heuristic function

estimates the true merits of each node in the search tree (or graph), the more

direct the solution process. In the extreme, the heuristic function would be so

good that essentially no search would be required. The system would move

directly to a solution (Rich & Knight, 2000).

Humans use intelligent search: a chess player considers a number of

possible moves, a doctor examines several possible diagnoses, and a

computer scientist entertains different designs before beginning to write code.

Humans do not use exhaustive search: the chess player examines only moves

www.manaraa.com

8

 that experience has shown to be effective; the doctor does not require

tests that are not somehow indicated by the symptoms at hand. Human

problem solving seems to be based on judgmental rules that guide search to

those portions of the state space that seem most "promising" (Luger, 2005).

1.1.7 Types of Artificial Intelligence Searching Techniques

Search techniques (also called Search strategies, Control strategies, Search

procedures, Search methodologies, or Search methods) are used to solve

problems in Artificial Intelligence according to the state space representation of a

problem (Bigus & Bigus, 2001), where search algorithms must keep track of the

paths from a start to a goal node, because these paths contain the series of

operations that lead to the problem solution (Luger, 2005).

There are many Search Methodologies in Artificial Intelligence. Search

Strategies may be classified mainly as Blind, or Heuristics search (Coppin,

2004).

Blind Search technique (also called Exhaustive, Brute - Force, or Uninformed

Search) includes search concepts like: Generate and Test, Depth-First Search,

Breadth-First Search, and Depth-First Iterative Deepening (Coppin, 2004).

Heuristics search technique (also called informed, more informed, and more

intelligent search) includes search concepts like: Hill climbing, Best-First Search,

Beam Search, and Optimal Paths (Branch-&-bound, A*, and Greedy Search)

(Coppin, 2004).

www.manaraa.com

9

1.1.7.1 Blind Artificial Intelligence Searching techniques

An exhaustive search looks at objective function values at every point in the

search space, one at a time. They are usually discounted due to lack of

efficiency (Clay, Crispin & Crossley, 2000).

The simplest approach to search is called Generate and Test. This simply

involves generating each node in the search space and testing it to see if it is a

goal node. If it is, the search has succeeded and need not carry on. Otherwise,

the procedure moves on to the next node (Coppin, 2004). It is also known as

the British Museum algorithm, a reference to a method for finding an object in

the British Museum by wandering randomly. Or, as another story goes if

sufficient number of monkeys were placed in front of a set of' typewriters and

left alone along enough, then they would eventually produce all of the works

of' Shakespeare (Rich & Knight, 2000).

Three basic search strategies that systematically explore a state space are

depth first, breadth first, and iterative deepening (Bratko, 1998).

Depth-first search and breadth-first search are the best-known and widest-

used search methods (Coppin, 2004).

Depth-first search (DFS) is so called because it follows each path to its

greatest depth before moving on to the next path. Depth-first search is often

used by computers for search problems such as locating files on a disk, or by

search engines for spidering the Internet (Coppin, 2004), and in all sorts of

programs, ranging from those that do robot path planning to those that provide

www.manaraa.com

11

 natural-language access to database information (Winston, 2000).

Breadth-first search (BFS), in contrast, explores the space in a level-by-

level fashion. Only when there are no more states to be explored at a given level

does the algorithm move on to the next level (Luger, 2005).

The Depth-First Iterative Deepening (DFID) algorithm involves

repeatedly carrying out depth-first searches on the tree, starting with a depth-

first search limited-to a depth of one, then a depth-first search of depth two, and

so on, until a goal node is found (Coppin, 2004), so it combines the desirable

properties of depth-first and breadth-first search (Bratko,2001).

1.1.7.2 Heuristic Artificial Intelligence Searching techniques

Heuristic search (HS) is one of the older fields in artificial intelligence.

Nilsson & Pearl (Nilsson, 1971; Pearl, 1984) wrote the classic introductions to the

field (Schaeffer & Plant, 2000). George Polya defines heuristic as "the study of the

methods and rules of discovery and invention" (Polya 1945).

Brute-force search algorithms blindly search the state space, while

heuristic search algorithms use feedback or information about the problem to

direct the search (Bigus & Bigus, 2001).

The simplest way to implement heuristic search is through a procedure called

Hill-climbing (Pearl, 1984). Hill-climbing (HC) strategies expand the current state

of the search and evaluate its children. The best child is selected for further

expansion: neither its siblings nor its parent are retained. Hill-climbing is named for

the strategy that might be used by an eager, but blind mountain climber: go uphill

www.manaraa.com

11

along the steepest possible path until you can go no farther up. Because it

keeps no history, the algorithm cannot recover from failures of its strategy (Luger,

2005).

Steepest ascent hill climbing is similar to hill climbing, except that

rather than moving to the first position you find that is higher than the current

position, you always check around you in all four directions and choose the

position that is highest. (Coppin, 2004) P.99.

Simulated annealing is a variation of hill climbing in which, at the

beginning of the process, some downhill moves may be made. The idea is

to do enough exploration of the whole space early on so that the final

solution is relatively insensitive to the starting state. Simulated annealing

(Kirkpatrick et al, 1983) as a computational process is patterned after the

physical process of annealing, in which physical substances such as metals

are melted (i.e., raised to high energy levels) and then gradually cooled until

some solid state is reached (Rich & Knight,2000) .

Best-first search (BFS) is a systematic control strategy combining

the strengths of breadth-first and depth-first search into one algorithm.

The main difference between best-first search and the brute-force search

techniques is that we make use of an evaluation or heuristic function to order

the Search Node objects on the queue. In this way, we choose the Search

Node that appears to be best before any others, regardless of their position in

the tree or graph (Bigus & Bigus, 2001).

www.manaraa.com

12

Beam Search (BS) is a form of breadth-first search that employs a

heuristic, as seen with hill climbing and best-first search. Beam search works

using a threshold so that only the best few paths are followed downward at

each level. It has the disadvantage of not exhaustively searching the entire tree

and so may fail to ever find a goal node (Coppin, 2004) P.105.

1.1.7.3 Optimal Artificial Intelligence Searching techniques

Several methods exist that do identify the optimal path through a search

tree. The optimal path is the one that has the lowest cost or involves traveling the

shortest distance from start to goal node. The techniques described previously

may find the optimal path by accident, but none of them are guaranteed to

find it. The simplest method for identifying the optimal path is called the British

Museum procedure (Coppin, 2004).

The following more sophisticated techniques for identifying optimal paths are

outlined in this introduction: Branch and Bound, A*, and Greedy search.

Several techniques can reduce the search complexity. One is called

Branch and Bound (B&B) (Uniform cost search) (Horowitz and Sahni 1978).

Branch and bound generates paths one at a time, keeping track of the best circuit

found so far. This value is used as a bound on future candidates. As paths are

constructed one node at a time, the algorithm examines each partially

completed path. If the algorithm determines that the best possible extension

to a path, the branch, will have greater cost than the bound, it eliminates that

partial path and all of its possible extensions. This reduces search considerably

but still leaves an exponential number of paths (Luger, 2005; Kruse et al, 2000).

www.manaraa.com

13

Branch and Bound strategy is applied in order to find optimal or near optimal

solutions for most problems in high-level synthesis (HLS) (Black, 2005).

One of the most famous search algorithms used in AI is the A* search

algorithm, which combines the greedy search algorithm for efficiency with the

uniform-cost search for optimality and completeness (Bigus & Bigus, 2001).

Greedy search is a variation of the A* algorithm, where g(node) is set to

zero, so that only h(node) is used to evaluate suitable paths. In this way, the

algorithm always selects the path that has the lowest heuristic value or estimated

distance (or cost) to the goal. Greedy search is an example of a best-first strategy

(Coppin, 2004).

There are many other different Search techniques used to solve problems in

AI like: Exchanging Heuristics, Iterated local Search, Tabu Search, Using Ant Colony

Optimization, Using Genetic Algorithms for Search, Real-time A*, Iterative-Deepening

A*, Agendas, Parallel Search, Bidirectional Search, and Nondeterministic Search

(Coppin, 2004;Rich & Knight,2000).

1.1.8 Previous Works of Fuzzy Shortest Path Problem in
Networks

Many literatures about the fuzzy shortest path in networks can be found,

e.g., (Okada & Soper, 2000), (Dubois & Prade, 1980). Most of them are related

to the fuzzy shortest path problem in networks. Dubios and Prade (Dubois &

Prade, 1980) first introduced the fuzzy shortest-path problem in 1980. The major

drawback of this fuzzy shortest-path problem is the lack of interpretation, where

they did not develop approach to determine the shortest path (Yao & Lin, 2003).

www.manaraa.com

14

 Klein (Klein, 1991) proposed a hybrid multi-criteria algorithm based on

fuzzy dynamic programming (DP) that specified each arch length within an

integer value from one to a fixed number, nevertheless, the proposed approach

did not provide an extension to the crisp counterpart.. In (Okada & Soper, 2000),

Okada and Soper proposed a fuzzy algorithm, which was based on multiple

labeling methods, to offer non-dominated paths to a decision maker(Lin & Chern,

1994; Hansen, Beckmann & Kunzi 1980). Ma and Chen (Ma & Chen, 2005)

proposed the on-line fuzzy shortest path problem when the decision-making is

under the condition of without knowing the on-line releasing congestion points,

employing the Overall Existence Ranking Index (OERI) to rank the paths.

Yao and Lin (Yao & Lin, 2003) presents two new types of fuzzy shortest-

path network problems combining statistics with fuzzy sets and a signed distance

ranking. Mares and Horak (Mares & Horak, 2003) proposed that the uncertainty

connected with the input data of a network can be described and investigated by

means of fuzzy sets and fuzzy quantities theory. Takahashi and Yamakami

(Takahashi & Yamakami, 2005) proposed a modified Okada's algorithm (Okada,

2001), using some properties observed by other authors, they also proposed a

genetic algorithm technique to seek an approximated solution for large scale

problems.

Okada (Okada, 2001) proposed his new algorithm by taking interaction

among paths into consideration. The degree of possibility for each arc on a

network "ill posed" is obtained by this algorithm. Moazeni (Moazeni, 2005)

proposed a different algorithm which takes advantage of the multiple labeling

www.manaraa.com

15

method and Dijkstra's shortest path algorithm.

Kruse et al (Kruse et al, 2000) proposed a fast estimation technique, which

can be applied in high-level synthesis (HLS) to reduce the power consumption in

data path components, so they applied branch and bound strategy to find optimal

or near optimal solutions for this problem.

All of the previous mentioned works are about the fuzzy shortest path

problem in networks and related to the use of Dijikstra’s and Okada’s algorithm

in networks as a network’s searching techniques, also most of them did not

develop an exact approach to determine the shortest path.

To the best of our knowledge, no other research has been carried out where

fuzzy underestimates is applied with “Branch and Bound” algorithm, or A*

algorithm which are an Artificial Intelligence Search Techniques or an Artificial

Intelligence Problem-Solving Techniques.

1.2 Statement of the Problem

The existing Branch & Bound augmented by underestimate and A*

searching techniques are techniques that work well on precise data, but not on

imprecise data, whereas data available are not always crisp in real life.

Fuzzy sets in knowledge representation have advantages over the

traditional logic, since it is, basically, a theory of graded concepts in which

values of variables are a matter of degree. In describing human behavior,

we generally use words which are called linguistic values rather than

numbers to characterize the value of variables as well as the relations among

www.manaraa.com

16

 them. In general, most fuzzy variables can be characterized by a rating

attribute and the governing fuzzy sets which appear in its constituents (Sun

& Hadipriono, 1995).

The purpose of this study is to develop new techniques which are able to

deal with imprecise real life data type and its hidden uncertainity during a search.

The objective of such work is to deal with the imprecise data involved in

different kinds of existing searching techniques in a more efficient way.

1.3 Goals of this Dissertation

Branch and Bound search augmented by underestimate and A* searching

technique are an effective heuristic principle guided Artificial Intelligence

Problem-Solving Techniques.

Heuristic principle guides the search process so as to always expand the

node that is currently the most promising according to the heuristic estimates.

The aim of this research is to deal with uncertainty or imprecise data in

a more efficient way by applying fuzzy logic on booth searching techniques,

where fuzzy logic is an appropriate tool to deal with such problems (Zadeh,

1965; Klir & Yuan; 1995; Guangwu, 1993; Moore, 1966).

Fuzzy systems are able to treat uncertain and imprecise information,

where they have a capability to express knowledge in the form of linguistic

rules.

On the average, they improve the quality of the paths that are explored, where,

using good fuzzy heuristics, we can hope to get good solutions to hard

www.manaraa.com

17

 problems in less than exponential time, by using Branch and Bound search

and A* searching techniques.

1.4 Dissertation Contributions

A search problem and its solution by the existing crisp methods of Branch

and Bound and A* search have been considered in this dissertation. It is observed

that these methods can be improved by using fuzzy theory. Consequently a new

method of Branch & Bound and A* searching techniques with fuzzy

underestimation to the available Fuzzy information (using Triangular Fuzzy

Number model) has been proposed to add Fuzzy Underestimation to the existing

Algorithms, thus a new improved version of searching techniques under

uncertainty has been suggested to be helpful in many real life problems of

computer science, specially in AI field, the corresponding algorithms have been

given, and the algorithms have been explained by examples.

The proposed algorithms have been implemented and tested. The analysis

and simulation results showed that Fuzzy Underestimated A* and Fuzzy

Underestimated (Branch and Bound) search techniques have achieved better

efficiency, time complexity, and effective branching factor than all other compared

searching techniques.

1.5 Dissertation Structure

This dissertation is organized as follows:

 Chapter One: Presents introduction to dissertation subject, artificial

intelligence searching techniques, related works, fuzzy logic, expert

www.manaraa.com

18

 system, problem statement, goals of the dissertation and dissertation

contributions.

 Chapter Two: Provides Preliminaries for Fuzzy Set Theory, and

 Artificial Intelligence Search Techniques.

 Chapter Three: Contains Introduction for Crisp B & B, and Branch &

Bound Search with Fuzzy Underestimation which represents the first

dissertation work, with two applications for the proposed algorithm

 Chapter Four: Contains Introduction for B & B with dynamic

programming, Crisp A*, and A* Search with Fuzzy Underestimation which

represents the second dissertation work, with two applications for the

proposed algorithm

 Chapter Five: Deals with the analysis of the research algorithms. It

presents simulation for the proposed algorithms.

 Chapter Six: Presents conclusions, results discussion, and future

work.

 Appendices: Three appendices are added: the first appendix contains the

simulation psueducode, the second contains simulation code, and the third

appendix presents fuzzy logic information.

www.manaraa.com

19

In this chapter we are to give some preliminaries on two areas :

(i) fuzzy set theory., and

(ii) Search Techniques.

2.1 Fuzzy Set Theory

Fuzzy sets (Atanassov, 1999; Baldwin, 1981; Bratko, 2001; Blue et al, 2002;

Bustince et al, 1995; David, 1989; Dubois & Prade, 1980; 1990; Elaine, 1983;

Klir& Yuan, 1995; Guangwu, 1993; Gaines, 1976; Gorzalczany, 1987;

Negnevitsky, 2002; Rajagopalan et al, 2003; Rich & Knight, 2000; Zadeh, 1965;

1968; 1973; 1975; 1978) are of importance to us in our work in this thesis.

Actually without proper understanding of fuzzy set theory, it may not be possible

to understand this dissertation.

Fuzzy or multi-valued logic was introduced in the 1930s by Jan Lukasiewicz,

a Polish logician and philosopher (Lukasiewicz, 1930). Later, in 1937, Max Black,

a philosopher, published a paper called Vagueness: An exercise in logical

analysis (Black, 1937).Then in 1965 Lotfi Zadeh, Professor and Head of the

Electrical Engineering Department at the University of California at Berkeley,

published his famous paper “Fuzzy sets”. In fact, Zadeh rediscovered fuzziness,

identified and explored it, and promoted and fought for it (Negnevitsky, 2002).

Zadeh (Zadeh, 1965), initiated the notion of fuzzy set theory as a

modification of the ordinary set theory, which turned out to be of far reaching

www.manaraa.com

21

implications. Vague notions can be modeled using this theory. A fuzzy set

is a class of objects in which the transition form membership to non-membership

is gradual rather than abrupt. Such a class is characterized by a membership

function which assigns to an element a grade or degree of membership between

0 and 1. Fuzzy logic is the same as "imprecise logic". This new logic for

representing and manipulating fuzzy terms was called fuzzy logic, and Zadeh

became the Master of fuzzy logic (Negnevitsky, 2002).

A fuzzy set is a set with fuzzy boundaries, such as short, average or tall for

men's height. To represent a fuzzy set in a computer, we express it as a function

and then map the elements of the set to their degree of membership. Typical

membership functions used in fuzzy expert systems are triangles and trapezoids

(Negnevitsky, 2002).

Fuzzy logic is popular. The number of papers dealing with fuzzy logic and

its application is immense, and the success in applications is evident. In 1991

there were (1400) papers dealing with fuzzy systems (Rajagopalan, Washington,

Rizzoni & Guezennec, 2003).

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is

approximate rather than precisely deduced from classical predicate logic. It can

be thought of the application side of fuzzy set theory dealing with well thought out

real world expert values for a complex problem (Klir, 1997).

2.1.1 Crisp Sets and Fuzzy Sets

A set can be described either by the list method or by the rule method. We

know that the process by which individuals from the universal set X are

http://en.wikipedia.org/wiki/Fuzzy_set

www.manaraa.com

21

 determined to be either members or nonmembers of a set can be defined

by a characteristic function or discrimination function.

For a given set A, this function assign a value A (x) to every x  X such

that

 A (x) = 1 if x  X

 = 0 if x  X

Thus in the classical theory of sets, very precise bounds separate the

elements that belong to a certain set from the elements outside the set. In other

words, it is quite easy to determine whether an element belongs to a set or not.

For example, if we denote the set of signalized intersections in a city by A, we

conclude that every intersection under observation belongs to set A if it has a

signal. Element x’s membership in set A is described in the classic set theory by

the membership function A(x), as follows:

www.manaraa.com

22

1, if and only if x is member of A

A(x) =

 0, if and only if x is not member of A

It is clear form Figure (2.1) that A(x) =1, A(y) =1, and A (z) =0.

Many sets encountered in reality do not have precisely defined bounds that

separate the elements in the set from those outside the set. Thus, it might be said

that waiting time of a vehicle at a certain signal is “long”. If we denote by A the

set of “long waiting time at a signal,” the question logically arises as to the bounds

of such a defined set. In other words, we must establish which elements belong

to this set. Does a waiting time of 25 seconds belong to this set? What about 15

seconds or 90 seconds?

The air traffic between two cities can be described as having “high flight

frequency.” Do flight frequencies of five flights a day, eight flights a day, three

flights a day belongs to “high flight frequency” category?

U

Figure 2.1: Set A and elements x, y and z of U

A

z  z

 x

 y

 

www.manaraa.com

23

Travel time between origin and destination is usually subjectively estimated

as “short,” “not too long”, “long”, “medium”, “about twenty minutes”, “around half

an hour”, and so on. Now, does a travel time of 40 minutes, 25 minutes, or 8

minutes belong to the set called “travel time of around half an hour”? We

intuitively know that a travel time of 25 minutes belongs to the set called “travel

time of around half an hour” “more” or “stronger” than a travel time of 8 minutes.

In other words, there is more truth in the statement that travel time of 25 minutes

is “travel time of around half an hour” than in the statement that travels time of 8

minutes is “travel time of around half an hour”.

This characteristic function can be generalized such that the values assigned to

the elements of the universal set fall within a specified range and indicate the

membership grade of these elements in the set in question. Such a function is

called membership function and the set defined by it a fuzzy set.

The membership function for fuzzy sets can take any value form the closed

interval [0,1]. Fuzzy set A is defined as the set of ordered pairs

A = {x, A(x)}, (1)

The following holds for the functional values of the membership function μA (x)

 (2)

Where A(x) is the grade of membership of element x in set A. The greater A(x),

the greater the truth of the statement that element x belongs to set A.

www.manaraa.com

24

Let us denote the crisp set by X = {x1, x2……...., xn} the finite discrete

set of elements xi, i = 1, 2, …., n. Set X can also be shown in the form:

where the sign + denotes the union of the elements. Set X is referred to as the

“universe of discourse”, and it may contain either discrete or continuous values

(elements).

Similarly, fuzzy set A defined over a set X is most often shown in the form:

A fuzzy set A can also be defined over a set X in any of the following forms :-

(i) A = { A(x1)/x1, A(x2)/x2, A(x3)/x3, ………., A(xn)/xn }. (5)

(ii) A = { (x1, A(x1)), (x2, A(x2)), (x3, A(x3)), ………., (xn, A(xn)) }. (6)

(iii) A = { (x, A(x)) : x  X }. (7)

(iv) or, sometimes just by the membership function A : X → [0,1]. (8)

When X is continuous and not a finite set, fuzzy set A defined over set X is

expressed as:

 A(x1) A(x2) A(xn) n A(x1)

A = + + …… + =  (4)

 x1 x2 xn i=1 xi

)x(A

A =  , (9)

 x x

 n

 X = x1 + x2 + ……+ xn =  xi , (3)

 i=1

www.manaraa.com

25

where the integration sign represents the union of the elements.

Illustrative example 2-1:

Let us consider a set X = {2, 5,9,18,21,25}, whose elements denote the

number of vehicles waiting in line at a traffic signal.

Set B consists of the fuzzy set “small number of vehicles in line.” Fuzzy set

B can be shown as:

or in other form like:

 B = { (2,0.95), (5,0.55), (9,0.20), (18,0.10), (21,.05), (25,.01) }.

(11)

The grades of membership 0.95, 0.55,…, 0.01 are subjectively determined

and indicate the “strength” of membership of individual elements in fuzzy set B.

For example, 2 belongs to fuzzy set B with a grade of membership of 0.95, which

comprises a “small number of vehicles in line” at the signal.

 0.95 0.55 0.20 0.10 0.05 0.01

B = ------- + -------- + -------- + --------+ ------- + ------- (10),
 2 5 9 18 21 25

www.manaraa.com

26

2.2.Illustrative example
Let us consider a fuzzy set A, which is defined as “travel time is

approximately 30 minutes.” Membership function A (t), which can subjectively

be determined as shown below in figure (2.2):-

In this case, we have subjectively estimated that travel time between the two

points can be within the limits of 25 to 35 minutes. A travel time of 30 minutes has

a grade of membership of 1 and belongs to the set “travel time is approximately

30 minutes.” All travel times within the interval of 25 to 35 minutes are also

members of this set because their grades of membership are greater than zero.

Travel times outside this interval have grades of membership equal to zero.

2.1.2 Various Operations on Fuzzy Sets

Fuzzy sets can interact. These relations are called operations. The main

operations of fuzzy sets are: complement, containment, intersection, and union

(Negnevitsky, 2002).

A (t)

0.0

1.0

0.5

0 5 10 15 20 25 30 35 40 t [min.]

Figure 2.2: Membership function A (t) of fuzzy set A.

www.manaraa.com

27

In this section we recollect some basic operations on fuzzy sets. Let A and

B be two fuzzy sets of X having membership functions A and B

respectively.

2.1.2.1 Equality of two Fuzzy Sets
Two fuzzy sets A and B are equal, and denoted as A = B, if and only if

A (x) = B (x) for all elements of set X.

If at least one x  X such that A (x) ¹ B (x) , then A and B are said to be ‘not

equal’ and it is denoted as A ¹ B.

2.1.2.2 Subsets of Fuzzy Sets

Fuzzy set A is a subset of the fuzzy set B, and denoted as A  B, if and

only if:

A (x)  B (x) for all elements x of the set X.

In other words, A  B if for every x of X, the grade of membership in fuzzy

set A is less than or equal to the grade of membership in fuzzy set B.

Consider the fuzzy sets A and B, respectively, the fuzzy sets “long travel

time” and “very long travel time”. The fuzzy set “very long travel time” is a subset

of the fuzzy set “long travel time” since the following relation is obviously to be

satisfied for every x:

µB (x) ≤ µA (x)

www.manaraa.com

28

Example 2-3:

Let X = {a, b, c, d} be a universe of which A = {a/.9, b/.2, c/.1, d/.5}

and

B = {a/.6, b/.1, c/0, d/.1} are two fuzzy sets.

Then, clearly B  A.

2.1.2.3 Complementation
Let A be a fuzzy set of the universe X. Then the complement of A is a fuzzy

set denoted by Ac of the same universe X with the membership function µAc

given by

µAc(x) = 1 - µA(x),  x  X.

Clearly, we have (Ac)c = A.

Example 2-4:

Let X = {a, b, c, d} be a universe, and A = {a/.2, b/.6, c/.3, d/.3} is a fuzzy set of

X.

 (x)Aµ

 (x)Bµ

0

1

X [min]

Figure 2.3: Membership functions of the fuzzy sets A = “long travel time”

 and “very long travel time”.

www.manaraa.com

29

Then the complement of this fuzzy set A is the fuzzy set Ac in X given by :

Ac = {a/.8, b/.4, c/.7, d/.7}.

Clearly (Ac)c = {a/.2, b/.6, c/.3, d/.3} which is the fuzzy set A.

2.1.2.4 The Union of Fuzzy Sets

Let A and B be two fuzzy sets of X having membership functions A

and B respectively. The union of A and B, denoted by AB, is the fuzzy set

in X defined as the smallest fuzzy set that containing both fuzzy set A and fuzzy

set B.

The membership function µAB of the union AB of fuzzy sets A and B is defined

as follows :

µAB(x) = max { µA(x), µB(x) } for every x of X.

The symbol  is often used instead of the symbol ‘max’. The union corresponds

to the operation “or”. Thus we can write µAB(x) = µA(x)  µB(x).

µB(x)
µA(x)

0

1

 x

 µ A  B (x)

Figure 2.4: Membership functions of fuzzy sets A, B and A  B.

www.manaraa.com

31

.Example

Delays in air transportation can be due to technical reasons, meteorological

conditions, late or non appearance of flight crews, and so on. We assume that

out of total aircraft delays, technical reasons make “approximately 30%” of the

reasons for delays. We also assume that meteorological conditions cause delays

in “approximately 25%” of the cases.

Now we will define fuzzy sets A and B as follows:- A defines “approximately

30% of the cause of delay”, and B defines “approximately 25% of the cause of

delay”. The fuzzy set AB denotes “approximately 25% or approximately 30%

of the cause of delay and refers to aircraft delays due to technical reasons or

meteorological conditions. The membership functions of the fuzzy set AB is

shown below:-

2.1.2.5 The Intersection of Fuzzy Sets

The intersection of fuzzy sets A and B is denoted by AB and is defined as

the largest fuzzy set of X contained in both fuzzy sets A and B. The intersection

0

1

0

10 5 15 20 25 30 35 40 45 [%]

µ

Figure 2.5: Membership functions of the fuzzy sets “approximately 25%”, “approximately 31%”

and “approximately 25% or approximately 31%” of the cause of delay.

www.manaraa.com

31

 corresponds to the operation “and”.

Membership function µAB(x) of the intersection AB is defined as follows:

µAB(x) = min { µA(x), µB(x) }} for every x of X.

The symbol  is often used instead of the symbol ‘min’. Thus we can write:

µAB(x) = µA(x)  µB(x).

Example 2-6:

Suppose that the visibility on airport runways and the height of the cloud

base are measured in metres. Visibility can be “good,” “medium,” or “poor.” The

cloud base can be “low” or “high’.

Consider the fuzzy sets A and B defined as follows: A defines “poor visibility on

airport runways,” and B defines “high cloud base”. Then the fuzzy set A  B

denotes “poor visibility on airport runways and high cloud base”.

µ(x)

µA(x)
µB(x)

0

1

 x

 µ A  B (x)

Figure 2.6 Membership functions of fuzzy sets A, B and A  B.

www.manaraa.com

32

2.1.3 Fuzzy Numbers
The concept of fuzzy numbers have been very successfully used in many

areas like fuzzy linear programming, fuzzy optimization problems, fuzzy

databases, fuzzy algebras etc. to list a few only.

To study the fuzzy numbers, we need to have a prior knowledge of convex

fuzzy sets and normalized fuzzy sets.

2.1.3.1 Convex Fuzzy set
A fuzzy set A of the universe X is called to be convex if

A (x1 + (1  )x2) ³ min (A (x1), A (x2)),

where x1, x2  X,   [0,1].

2.1.3.2 Normalized Fuzzy set

Let A be a fuzzy set of the universe X. If sup A (x) = 1, then the

fuzzy set A is called to be a normal fuzzy set.

2.1.3.3 Fuzzy Number

A fuzzy number M is a convex normalized fuzzy set M of the real line R

whose membership function is at least segmentally continuous and has the

functional value μA(x) = 1 at precisely one element; such that:

(i) It exists exactly one x0  R with M (x0) = 1

 (x0 is called the mean value of M).

(ii) M (x) is piecewise continuous.

There are two types of fuzzy numbers popularly used in different domains

of applications. These are :-

http://en.wikipedia.org/wiki/Continuous_function

www.manaraa.com

33

(i) Triangular fuzzy number (TFN).

(ii) Trapezoidal fuzzy number.

An example of a triangular fuzzy number “approximately 30” can be shown

in figure (2.2).

For computational efficiency, trapezoidal membership functions are often

used. Figure (2.7) shows such a fuzzy set, which is called ‘approximately 5’ and

which would normally be defined as quadruple {3, 4, 6, 7}. It is actually a fuzzy

interval.

2.1.3.4 Positive Fuzzy Number
A fuzzy number M is called positive (negative) if its membership function

is such that M (x) = 0,  x  0 (x  0).

1 1 2 3 4 5 6 7 8 9 11 X

1.0

(x)

Figure 2.7: Trapezoidal fuzzy number {3, 4, 6, 7}

www.manaraa.com

34

Example 2-7:

The following fuzzy sets are fuzzy numbers:

(1) ‘Approximately 5’ = { (3,.2), (4,.6) (5, 1), (6,.7), (7,.1) }

(2) ‘Approximately 12’ = { (10,.3), (11,.8), (12,1), (13,.4), (14,.2) }

Clearly, {(6,.4), (7, 1), (8,1), (9,.2)}, is not a fuzzy number because;  (7) and 

(8) both are equal to 1, and thus it is not a convex normalized fuzzy set.

The algebraic operations with crisp numbers are very common is practice.

In order to use fuzzy sets in applications, we will have to deal with fuzzy numbers

and the extension principle is one way to extend algebraic operations from crisp

to fuzzy numbers.

2.1.3.5 Definition
A fuzzy number M is called to be of LR - type if  reference functions L

(for left), R (for right), and scalars   0,   0 with

where ‘m’ is called the mean value of M. Here ‘m’ is a real number and  , 

are known as the left and right spreads respectively.

We represent M as (m, , ) LR , .where Fig 2.18 shows a LR-type

fuzzy number.





mx

mx
L

R

M (x) =

for x ³ m.

for x  m.

www.manaraa.com

35

2.1.3.6 α-cut of a vague set.
 The α-cut of the Fuzzy set A is a crisp subset denoted by the symbol Aα of the

set X, where:-

 Aα = { x : x X,  (x) ≥ α }.

Example 2-8:

Suppose that the Fuzzy set A= { (x1,0.6), (x2,0.3) (x3,0.8), (x4,0.2 }

If the decision maker provided, α = 0.4 = threshold value,

Then Aα = { x1, x3 }.

But if the decision maker provided, α = 0.25

Then Aα = { x1, x2, x3 }.

2.1.4 Hedge Definition

A qualifier of a fuzzy set used to modify its shape. Hedges include adverbs

such as `very', 'somewhat', `quite', `more or less' and `slightly'. They perform

mathematical operations of concentration by reducing the degree of membership

of fuzzy elements (e.g. very tall men), dilation by increasing the degree of

1.0

 (x)

0 5 11 X

Fig 2.8: LR-type fuzzy number.

www.manaraa.com

36

 membership (e.g. more or less tall men) and intensification by increasing

the degree of membership above 0.5 and decreasing those below 0.5 (e.g.

indeed tall men).

2.1.5 Fuzzy rule Definition

A conditional statement in the form: IF x is A THEN y is B, where x and y

are linguistic variables, and A and B are linguistic values determined by fuzzy

sets.

2.1.6 Fuzzy inference Definition

The process of reasoning based on fuzzy logic. Fuzzy inference includes

four steps: fuzzification of the input variables, rule evaluation, aggregation of the

rule outputs, and defuzzification.

2.1.6.1 Fuzzification Definition

The first step in fuzzy inference; the process of mapping crisp (numerical)

inputs into degrees to which these inputs belong to the respective fuzzy sets.

2.1.6.2 Defuzzification Definition

The last step in fuzzy inference; the process of converting a combined

output of fuzzy rules into a crisp (numerical) value. The input for the

defuzzification process is the aggregate set and the output is a single number.

www.manaraa.com

37

The process of search is fundamental to the problem-solving process

in Artificial Intelligence, where the problem can then be solved by using the

rules, in combination with an appropriate control strategy, to move through

the problem space until a path from an initial state to a goal state is found

(Rich & Knight,2000).

Search techniques are used to solve problems in Artificial Intelligence

according to the state space representation of a problem (Bigus & Bigus,

2001) , where Search algorithms must keep track of the paths from a start

to a goal node, because these paths contain the series of operations that

lead to the problem solution (Luger, 2005).

State space is a formalism for representing problems. State space is a

directed graph whose nodes correspond to problem situations and arcs to

possible moves. A particular problem is defined by a start node and a goal

condition. A solution of the problem then corresponds to a path in the graph.

Thus problem solving is reduced to searching for a path in a graph (Bratko,

1998).

There are two main approaches to searching a search tree, which roughly

correspond to the top-down and bottom-up approaches. Data-driven search

starts from an initial state and uses actions that are allowed to move forward

until a goal is reached. This approach is also known as forward chaining.

Alternatively, search can start at the goal and work back toward a start state, by

www.manaraa.com

38

 seeing what moves could have led to the goal state. This is goal-driven

search, also known as backward chaining (Coppin, 2004).

Very briefly, if the solution found is to be applied or used on a regular

basis then it is important that this solution be as efficient as possible, even

if it means sacrificing search time. In other words solution cost should be

minimal at the expense of a high search cost. On the other hand, if the

problem is a one-off then optimizing the solution cost may no longer be a

priority, instead optimizing the search cost may be the number one concern.

Search Strategies may be classified mainly as Blind, Heuristics, and

Optimal Paths search (Coppin, 2004).

Blind or Exhaustive Search techniques include search concepts like:

Generate and Test, Depth-First Search, Breadth-First Search, and Depth-First

Iterative Deepening

Heuristics or informed search techniques include search concepts like: Hill

climbing, Best-First Search , Beam Search, and Optimal Paths search techniques

include search concepts like: Branch-and-bound, Discrete Dynamic

Programming, and A*.

Assumptions

We will consider the following two assumptions in our work:

1- For our work, when we refer to "search," we are talking about data-driven

search, where there are two directions in which to search: search

forward through the state space, or backward from the goal (Doyle,

Dec 5.,2005), but we are to use Directed Acyclic Graph (DAG) because

it is impossible to "go back up" the structure once a state has been

www.manaraa.com

39

 reached (Coppin, 2004; Luger, 2005).

2- We need to be careful to remove repetitions of paths, or loops, because

those should add redundancy to the graph and make searching it

inefficient, where general graph search algorithms must detect and

eliminate loops from potential solution paths, whereas tree searches

may gain efficiency by eliminating this test and its overhead (Coppin,

2004; Luger, 2005).

In this section we are to explain how to find paths through nets, thus solving

search problems. In particular, we will explain in details Depth-First Search, and

Breadth-First Search (which are the best-known and widest-used search

methods) (Coppin, 2004), with their algorithms and examples involving map

traversal. We will also explain briefly Hill Clamping Search, and British Museum

Procedure. Finally, we will explain several important properties that search

methods should have in order to be most useful.

2-2-1 Blind Methods
In order to explain many techniques, one can look at the problem of route

planning, in particular planning a route from start node (S) to goal node (G) in the

following map.

We begin with an example;

www.manaraa.com

41

Example 2.1:

Suppose that Mr. X is trying to find some path from one city to another city

using a highway map such as the one shown in Figure (2.9). The starting point in

the city, which might be called (start node), and ending point in the city, which

might be called (goal node).

If Mr. X needs to go to the goal city often, then finding a good path is worth

a lot of search time. On the other hand, if Mr. X needs to make the trip only once,

and if it is hard to find any path then he may be content as soon as he finds any

path, even though he could find a better path with more work.

The most obvious way to find a solution is to look at all possible paths. Of

course, one would discard paths that revisit any particular city, so that he or she

cannot get stuck in a loop– such as S-A-D-S-A-D-S-A-D-…

With looping paths eliminated, one can arrange all possible paths from the

31

48

57

18

10 65

22

32

S

A B C

D E G

32

Fig 2.9: A basic search problem, where a path is to be found from the start node, S, to the goal node, G .

www.manaraa.com

41

start node S in a search tree (a special kind of semantic-tree in which each

node denotes a path).

Figure (2.10) shows a search tree that consists of nodes denoting the

possible paths that lead outward from the start node S of the net shown in figure

(2.9).

There are two important costs to consider with respect to search-based

problem solving:

1. Search Cost – The cost of finding a solution (computation cost when finding

a path)

2. Solution Costs – The cost of using this solution (travel cost expended when

traversing the path).1

1 This cost might be a representation of the miles necessary in car travel or cost of an air flight between

the two cities

B

C

D

E

G

G

B

C

D

E

G

G

S

A
D

A

B

C E G

G

A

B

C

E

G

G

Denotes the path S-A-B-C-G

Denotes the path S-D

Figure: 2.10: A search tree made from a net. Each node denotes a path. Each child node denotes a path

that is a one-step extension of the path denoted by its parent. Nets can be converted into search trees

by tracing out all possible paths until searcher cannot extend any of them without creating a loop.

www.manaraa.com

42

The basic idea in nearly all of the search techniques is to maintain and

extend a set of partial solution sequences, different search techniques offer

different guarantees with regards to both of these costs, Figure (2.11) shows the

basic search techniques classification.

In general the longer one spends searching, the better resulting solution;

that is, high search costs usually mean low solution costs, depending on the type

of problem and the way in which the solution will be used. Search may or may

not be a good idea, and more importantly one particular type of search may be

preferred over another.

Search

Blind Search
Heuristic Search Optimal methods

Depth-first

Breadth-First

Beam
Search

Hill
Climbing

Branch &
Bound

A*

Figure: 2.11 Basic search techniques classification.

www.manaraa.com

43

Very briefly, if the solution found is to be applied or used on a regular basis

then it is important that this solution be as efficient as possible, even if it means

higher search time. In other words solution cost should be minimal at the expense

of a high search cost.

On the other hand, if the problem is a one-off then optimizing the solution

cost may no longer be a priority, instead optimizing the search cost may be the

number one concern.

Note that, although each node in a search tree denotes a path, there is no

room in the diagram to write out each path at each node. Accordingly, each node

is labeled with only the terminal node of the path it denotes. Each (child) denotes

a path that is a one-city extension of the path denoted by its (parent).

The node with no parent is called the (root node). The nodes at the bottom,

the ones with no children, are called (leaf nodes). One node is the (ancestor) of

another, a (descendant), if there is a chain of one or more branches from the

ancestor to the descendant.

If a node has b children, it is said to have a (branching factor) of b. If the

number of children is always b for every nonleaf node, then the tree is said to

have a branching factor of b.

In Figure(2.10), the root node denotes the path that begins and ends at the

start node S. The child of the root node labeled A denotes the path S-A.

Each path, such as S-A, that does not reach the goal is called a (partial path).

Each path that does reach the goal is called a (complete path), and the

corresponding node is called a (goal node). Determining the children of a node

is called (expanding) the node. Nodes are said to be (open) until they are

www.manaraa.com

44

expanded, whereupon they become (closed).

Note that search procedures start out with no knowledge of the ultimate size

or shape of the complete search tree. All they know is where to start and what

the goal is. Each must expand open nodes, starting with the root node until it

discovers a node that corresponds to an acceptable path.

The total number of paths in a tree with branching factor b and depth d is

bd. Thus, the number of paths is said to explode exponentially as the depth of the

search tree increases.

Accordingly, searcher always tries to deploy a search method that is likely

to develop the smallest number of paths.

2.2.1.1 Depth-First Search (DFS)

Given that one path is as good as any other, one simple way to find a path

is to pick one of the children at every node visited, and to work forward from that

child. Other alternatives at the same level are ignored completely, as long as

there is hope of reaching the goal using the original choice. This strategy is the

essence of depth-first search.

Using a convention that the alternatives are tried in left-to-right order, the

first thing to do is to dash headlong to the bottom of the tree along the leftmost

branches, as shown in Figure (2.12).

\But because a headlong dash leads to leaf node C, without encountering C, the

next step is to back up to the nearest ancestor node that has an unexplored

alternative. The nearest such node is B. The remaining alternative at B is better,

bringing eventual success through E in spite of another dead end at D. Figure

(2.12) shows the nodes encountered.

www.manaraa.com

45

If the path through E had not worked, then the procedure would move still

farther back up the tree, seeking another viable decision point from which to move

forward. On reaching A, the procedure would go down again, reaching the goal

through D.

Having learned about depth-first search by way of an example, you can see

that the procedure, is as follows:

To conduct a depth-first search,

1- Form a one-element queue consisting of a zero-length path that contains only

the root node.

2- Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

S

A

B D

C E

D F

G

Figure 2.12: An example of depth-first search.

www.manaraa.com

46

2.3- Add the new paths, if any, to the front of the queue.

3- If the goal node is found, announce success; otherwise, announce

failure.

Figure (2.13) will explain the algorithm of depth-first search according to the

previous example shown in Figure (2.12):

7 SABEFG

SAD

SD

SUCCESS

SS

0

Extend SS to A, D

SABED

SABEF

SAD

SD

5 Can’t extend SABED

4 SABE

SAD

SD Extend SABE to D, F

3 SABC SABE SAD SD Can’t extend SABC

1
SA

Extend SA to B, D SD

6 Extend SABEF to G

SABEF

SAD

SD

2 Extend SAB to C, E

SAB SAD SD

S

A

B D

C E

D F

G

Figure: 2.13 Depth-First Search algorithm explanation

www.manaraa.com

47

Depth-first search is usually simpler to implement than breadth-first search,

and it usually requires less memory usage because it only needs to store

information about the path it is currently exploring, whereas breadth-first search

needs to store information about all paths that reach the current depth. This is

one of the main reasons that depth-first search is often used by computers for

search problems such as locating files on a disk, or by search engines for

spidering the Internet (Coppin, 2004).

2.2.1.2 Breadth -First Search (BFS)

Breadth-first search cheeks all paths of a given length before moving on to

any longer paths, where downward motion proceeds level by level, until the goal

is reached. In Figure (2.14), breadth-first search discovers a complete path to

node G on the third level down from the root level.

B

C E G

D

E

S

A
D

A

B B

E

Figure 2.14: An example of breadth-first search. Downward motion proceeds level by level,

until the goal is reached.

www.manaraa.com

48

A procedure for breadth-first search resembles the one for depth-first

search, differing only in where new elements are added to the queue.

To conduct a breadth-first search,

1- Form a one-element queue consisting of a zero-length path that contains only

the root node.

2- Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

2.3- Add the new paths, if any, to the back of the queue.

3- If the goal node is found, announce success; otherwise, announce failure.

Figure (2.15) will explain the algorithm of breadth -first search according to

the previous example shown in Figure (2.14):

www.manaraa.com

49

SS

0 Extend SS to D, A

SAB

SAD

SDAB

SDEB

5 Extend SAB to C,E,G

3
SDA

SDE

SAB SAD Extend SDA to B

1
SD

Extend SD to A, E SA

2 Extend SA to B, D

SA SDA SDE

4 SDE SAB SAD SDAB Extend SDE to B

SAD SDAB SDEB
SABC

6 Extend SAD to E

SABE

SABG

SDAB

SDEB

SABC

SABE

7 Extend SDAB to G

SABG

SADE

SDEB

SABC

SABE

SABG

8 SADE

SDABG

SUCCESS

B

C E G

D

E

S

A
D

A

B B

E

Figure 2.15: Breadth First Search algorithm explanation

www.manaraa.com

51

The right choice for the appropriate searching technique depends on the

tree, where depth-first search is a good method when one is confident that all

partial paths either reach dead ends or become complete paths after a

reasonable number of steps. In contrast, depth-first search is a bad method if

there are long paths, even infinitely long paths, that neither reach dead ends nor

become complete paths. In those situations, we need alternative search

methods.

Breadth-first search works even in trees that is infinitely deep or effectively

infinitely deep. On the other hand, breadth-first search is a wasteful method when

all paths lead to the goal node at more or less the same depth.

Note that breath-first search is a bad method if the branching factor is large

or infinite, because of exponential explosion. Breadth-first search is a good

method when one is confident that the branching factor is small. One may also

choose breadth-first search, instead of depth-first search, if the researcher is

worried that there may be long paths, even infinitely long paths, that neither reach

dead ends nor become complete paths.

In most cases the researcher is uninformed about the search problem, in

such cases researcher cannot rule out either a large branching factor or long

useless paths. In such situations, the researcher may want to seek a middle

ground between depth-first search and breadth-first search. One way to seek

such a middle ground is to choose nondeterministic search. When

nondeterministic search is being used, one can expand an open node that is

chosen at random. In this way, one ensures that the search algorithm will not get

www.manaraa.com

51

 stuck chasing either too many branches or too many levels.

2.2.2 . Heuristically Informed Methods
.

Search efficiency may improve spectacularly if there is a way to order the

choices so that the most promising are explored earliest. In many situations, one

can make measurements to determine a reasonable ordering. When taking the

advantage of such measurements; those methods are called heuristically

informed methods.

Heuristic search is one of the older fields in artificial intelligence. Nilsson &

Pearl (Hart et al., 1968; Hart et al., 1972) wrote the classic introductions to the

field (Schaeffer & Plant, 2000).

George Polya defines heuristic as "the study of the methods and rules of

discovery and invention" (Polya, 1945). This meaning can be traced to the

term's Greek root, the verb eurisco, which means "I discover." When

Archimedes emerged from his famous bath clutching the golden crown, he

shouted "Eureka!" meaning “I have found it!”. In state space search, heuristics

are formalized as rules for choosing those branches in a state space that are most

likely to lead to an acceptable problem solution (Luger, 2005).

A heuristic is a technique that improves the efficiency of a search process,

possibly by sacrificing claims of completeness. Heuristics are like tour guides.

They are good to the extent that they point in generally interesting directions; they

are bad to the extent that they may miss points of interest to particular individuals.

But, on the average, they improve the quality of the paths that are explored. Using

good heuristics, we can hope to get good (though possibly no optimal) solutions

www.manaraa.com

52

to hard problems, such as the traveling salesman, in less than exponential

time.

The purpose of a heuristic function is to guide the search process in the

most profitable direction by suggesting which path to follow first when more than

one is available: The more accurately the heuristic function estimates the true

merits of each node in the search tree (or graph), the more direct the solution

process. In the extreme, the heuristic function would be so good that essentially

no search would be required. The system would move directly to a solution (Rich

& Knight, 2000).

2.2.2.1 Hill Climbing (HC)

The simplest way to implement heuristic search is through a procedure

called hill-climbing (Pearl, 1984).

To move through a tree of paths using hill climbing, one proceeds as he

would in depth-first search, except that searcher orders his/her choices according

to some heuristic measure of the remaining distance to the goal. The better the

heuristic measure is, the better hill climbing will be relative to ordinary depth-first

search. One can note that Hill climbing is depth-first search with a heuristic

measurement that orders choices as nodes are expanded, where quality

measurements turn Depth-First Search into Hill Climbing.

Hill-climbing strategies expand the current state of the search and evaluate

its children. The best child is selected for further expansion: neither its siblings

nor its parent are retained. Hill-climbing is named for the strategy that might be

used by an eager, but blind mountain climber: go uphill along the steepest

possible path until you can go no farther up. Because it keeps no history, the

www.manaraa.com

53

 algorithm cannot recover from failures of its strategy.

From a procedural point of view, hill climbing differs from depth-first search

in only one detail; there is an added step: Sort the new paths, if any, by the

estimated distances between their terminal nodes and the goal.

2.2.3 Optimal Search
Several methods exist that do identify the optimal path through a search

tree. The optimal path is the one that has the lowest cost or involves traveling the

shortest distance from start to goal node. The techniques described previously

may find the optimal path by accident, but none of them are guaranteed to find it

(Coppin, 2004).

Optimal Search techniques deal with search situations in which the cost of

traversing a path is of primary importance. In this section we are to explain the

British Museum procedure, while we will explain the more sophisticated

techniques for identifying optimal paths like: branch and bound, discrete dynamic

programming, and A* procedures in the next chapters.

2.2.3.1 British Museum Procedure (BMP)

One Procedure for finding the shortest path through a net is to find all

possible paths and to select the best one from them. This Procedure is known as

British Museum Procedure, where BMP looks every where.

British Museum procedure is the simplest method for identifying the optimal

path. This process involves examining every single path through the search tree

and returning via the best path that was found. Because every path is examined,

the optimal path must be found. This process is implemented as an extension of

one of the exhaustive search techniques, such as depth-first or breadth-first

www.manaraa.com

54

 search, but rather than stopping when a solution is found, the solution is

stored and the process continues until all paths have been explored. If an

alternative solution is found, its path is compared with the stored path, and if it

has a lower cost, it replaces the stored path. If the breadth and depth of the tree

are small, then there are no problems.

Unfortunately, the size of search trees is often large, making any procedure

for finding all possible paths extremely unpalatable. Suppose that instead of the

number of levels being small, it is moderately large. Suppose further that the

branching is completely uniform and that the number of alternative branches at

each node is b. Then, in the first level, there will be b nodes. For each of these b

nodes, there will be b more nodes in the second level, or b2. Continuing this

analysis leads to the conclusion that the number of nodes at depth d must be bd.

For even modest breadth and depth, the number of paths can be large. For

example; b = 10 and d = 10 yields 10 billion paths. Fortunately, there are

strategies that enable optimal paths to be found without all possible paths being

found first.

2.2.4 Properties of Search Methods
There are several important properties that search methods should have in

order to be most useful. In particular, we will look at the following properties

(Coppin, 2004):

 Complexity

 Completeness

 Optimality

 Admissibility

www.manaraa.com

55

Complexity

In discussing a search method, it is useful to describe how efficient that

method is, over time and space.

The time complexity defines how fast an algorithm performs and

scales(Bigus & Bigus, 2001). The time complexity of a method is related to the

length of time that the method would take to find a goal state(Coppin, 2004).

The space complexity describes how much memory the algorithm requires

to perform the search(Bigus & Bigus, 2001). The space complexity is related

to the amount of memory that the method needs to use (Coppin, 2004).

It is normal to use Big-O notation to describe the complexity of a method. For

example, breadth-first search has a time complexity of O(bd), where b is the

branching factor of the tree, and d is the depth of the goal node in the tree (Coppin,

2004).

Completeness

A search method is complete if it is guaranteed to find a solution (a goal

state) if one exists. Breadth-first search is complete, but depth-first search is

not because it may explore a path of infinite length and never find a goal node that

exists on another path (Bigus & Bigus, 2001; Coppin, 2004).

Optimality

A search algorithm is optimal if it is guaranteed to find the best solution

from a set of possible solutions(Bigus & Bigus, 2001). In other words, it will find

the path to a goal state that involves taking the least number of steps (Coppin,

2004). This does not mean that the search method itself is efficient, it might take a

great deal of time for an optimal search method to identify the optimal

www.manaraa.com

56

solution, but once it has found the solution, it is guaranteed to be the best

one. This is fine if the process of searching for a solution is less time consuming

than actually implementing the solution. On the other hand, in some cases

implementing the solution once it has been found is very simple, in which case it

would be more beneficial to run a faster search method, and not worry about whether

it found the optimal solution or not.

Breadth-first search is an optimal search method, but depth-first search is

not. Depth-first search returns the first solution it happens to find, which may be the

worst solution that exists. Because breadth-first search examines all nodes at a given

depth before moving on to the next depth, if it finds a solution, there cannot be

another solution before it in the search tree.

In some cases, the word optimal is used to describe an algorithm that finds a

solution in the quickest possible time, in which case the concept of admissibility is

used in place of optimality. An algorithm is then defined as admissible if it is

guaranteed to find the best solution. A* is admissible when the heuristic function

never overestimates (Doyle, Dec. 5, 2005).

Successful search method should satisfy three properties:

1. Completeness (must be complete): It eventually produces all possible

solutions In other words, it must generate every possible solution;

otherwise it might miss a suitable solution.

2. non-redundant (must be nonredundant): It never proposes a solution

more than once. In other words, it should not generate the same solution

twice.

http://www.cs.dartmouth.edu/~brd/Teaching/AI/Lectures/Summaries/search.html#heuristic

www.manaraa.com

57

3. informed (must be well informed): It uses information to limit the

possibilities and hence the number of solutions proposed. This means that

it should only propose suitable solutions and should not examine possible

solutions that do not match the search space. A function h1 is more

informed than a function h2 if for all non-goal nodes n, h2(n) > h1(n) (Doyle,

Dec 5.,2005; Coppin, 2004).

2.2.5 The effect of heuristic accuracy on performance
One way to characterize the quality of a heuristic is the effective

branching factor b* If the total number of nodes generated by A* for a particular

problem is N, and the solution depth is d, then b* is the branching factor that a

uniform tree of depth d would have in order to contain N + 1 nodes. Thus,

N+1=1 + b* + (b*)² +….+ (b*)d .

For example. if A* finds a solution at depth 5 using 52 nodes:

52+1=1 + b* + (b*)² +….+ (b*)5 . ,

then the effective branching factor is 1.92.

To calculate this , we can use the well known mathematical identity:

121
1

1 


 n
n

xx
x

x
, then b* can be calculated by:-

d
d

bbN
b

b
*.....*11

1*

1* 2
)1(






This enables us to write a polynomial for which b* is zero, and we can solve

this using numerical techniques such as Newton’s method.

The effective branching factor can vary across problems. instances, but

www.manaraa.com

58

 usually it is fairly constant for sufficiently hard problems. Therefore,

experimental measurements of b* on a small set of problems can provide a

good guide to the heuristic's overall usefulness. A well - designed heuristic

would have a value of b* close to 1, allowing fairly large problem to be solved

(Russell& Norvig, 2003; Colton, 2005).

www.manaraa.com

59

3.1 Introduction
The Traveling Salesman Problem (TSP), in which a salesman makes a

complete tour of the cities on his route and visits each city exactly once while

traveling the shortest possible distance, is an example of a problem that has a

combinatorial explosion. As such, it cannot be solved using breadth-first or

depth-first search for problems of any realistic size. Unfortunately, there are

many problems which have this form and which are essentially intractable. In these

cases, finding the best possible answer is not computationally feasible, and so we

have to settle for a good answer (Bigus & Bigus, 2001).

The most common problem-solving technique for the situation depicted

above is what is called heuristic search. It generally encompasses a collection of

methods, principles and criteria for guiding problem-solving activities, based on

rule of thumb, on discrimination between the good and bad search-step selected,

or simply on repeated evaluation of the progress made toward selected, or simply

on repeated evolution of the progress made toward the solution goal. In doing so

we apply our heuristic knowledge, gained from hands-on experience. Such

knowledge involves a mixture of facts, simplified evaluation criteria, and rules of

thumb. The heuristic search technique includes search concepts like: Hill-

climbing, Best-first search, Beam search, Branch & Bound Search, and A*

(Bhatkar, 1994).

http://dis-tance.is/
http://such.it/

www.manaraa.com

61

Branch and Bound is one of several techniques which can reduce the

search complexity (Horowitz and Sahni 1978; Luger, 2005). Branch and bound

algorithm traces a decision tree whose leaves represent all possible solutions.

Design decisions are made at each internal node while the leaves of the subtree

rooted at an internal node are the solutions due to that decision. Given a best

solution found during execution of the branch and bound algorithm, a subtree can

be pruned if a lower bound estimate of the cost function of all solutions of the

subtree is higher than the cost of the current best solution. Tight and fast

computable lower bounds therefore improve the run time requirements of such

algorithms (Kruse et al. , 2000).

Branch and Bound augmented by underestimate search is an

improved version for B&B search. It uses the known cost combined with an

estimate of the distance from the state to the goal in order to choose the best

node to expand. Branch and Bound augmented by underestimate is

complete and optimal, and has memory requirements comparable to depth-first

search (Bigus & Bigus, 2001).

The existing Branch and Bound searching technique is a technique that

works well on precise data, but not on imprecise data whereas data available are

not always crisp in real life. Fuzzy logic might be an appropriate tool to enhance

dealing with such problems.

In this work, a new type of Branch and Bound searching technique using

fuzzy underestimates is proposed. Our objective in this dissertation, is to deal

with the imprecise data involved in different kind of existing searching techniques,

www.manaraa.com

61

 in more efficient ways. Thus an improved version of searching techniques

under uncertainty has been suggested, which will be helpful in many real life

problems of computer science, especially in AI field.

In this chapter we will consider a search problem and its solution by the

existing crisp method of branch and bound search. Consequently we will propose

a new method of branch and bound with fuzzy underestimates, giving the

corresponding algorithm, and explaining the algorithm by two applications

(examples).

We are to explain in details Branch and Bound Search (Crisp Method)

by providing crisp Branch and Bound algorithm, and crisp Branch and

Bound augmented by underestimates algorithm giving : Search Examples,

Search algorithm explanations for both procedures.

Then we are to explain in details Branch and Bound Search (Fuzzy

Method) by providing the suggested algorithm explanation giving : Branch

and Bound Fuzzy Method algorithm, and flow chart explanation.

Finally we are to explain in details two applications as examples for the

suggested algorithm.

3.2 Branch and Bound Search : Crisp Method

One way to find optimal paths with less work is to use branch-and-bound

search, where B&B Expands the least-cost partial path. The basic idea is simple.

Suppose an optimal solution is desired for the highway map shown previously.

Also suppose that an other source has told you that S-A-B-G is the optimal

solution. Being a scientist, however you do not trust others.

www.manaraa.com

62

Nevertheless, knowing that the length of S-A-B-G is 17; you can eliminate

some work that you might otherwise do. For example, as shown in Figure (3.1)

there is no need to consider paths that start with S-A-B-C, because their length

has to be at least 17, given that the length of S-A-B-C is already 17.

More generally, the branch-and-bound scheme always keeps track of all

partial paths contending for further consideration. The shortest one is extended

one level, creating as many new partial paths as there are branches. Next, these

new paths are considered, along with the remaining old ones: again, the shortest

is extended. This process repeats until the goal is reached along some path.

Because the shortest path was always the one chosen for extension, the path

first reaching the goal is “likely” to be the optimal path.

To turn “likely” into “certain” the searcher has to extend all partial paths

until they are as long as or longer than the complete path. The reason is that the

last step in reaching the goal may be long enough to make the supposed solution

longer than one or more partial paths. It might be that only a tiny step would

extend one of the partial paths to the solution point. To be sure that this is not so,

instead of terminating when a path is found, you terminate when the shortest

partial path is longer than the shortest complete path.

C G

B

A

S

17 17

Figure 3.1: Branch-and-Bound Search.
Length of the complete path from S to G,

 S-A-B-G is 17. Similarly, the length of the

partial path S-A-B-C also is 17 and any

additional movement along a branch will

make it longer than 17. Accordingly, there is

no need to pursue S-A-B-C any further

because any complete path starting with S-A-

B-C has to be longer than a complete path

already known. Only the other paths

emerging from S, from S-A and from S-A-B

have to be considered, as they may provide a

shorter path.

www.manaraa.com

63

The procedure differs from the basic search procedures only in the steps

shown in bold italic bellow:

To conduct a branch-and-bound search,

1- Form a one-element queue consisting of a zero-length path that contains

only the root node.

2- Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

2.3- Add the remaining new paths, if any, to the queue.

2.4- Sort the entire queue by path length with least-cost paths in

front.

3- If the goal node is found, announce success; otherwise, announce failure.

Now look again at the map-traversal problem, and note how branch-and-

bound works when started with no partial paths, Figure (3.2) illustrates the

exploration sequence, where the numbers beside the nodes denotes the length

of each path (cost) .

1-In the first step, the partial-path distance of S-A is found to be 42, and that of S-D is found to be

44; partial path S-A is therefore selected for expansion.

44
42

S

A
D

Figure 3.2: Branch and Bound Search Example

www.manaraa.com

64

2- Next, S-A-B and S-A-D are generated from S-A with partial path distances of 55 and 63.

44
42

S

A
D

63 55 B D

3- Now S-D, with a partial path distance of 44, is expanded, leading to partial paths to S-D-A

and S-D-E. At this point, there are four partial paths, with the path S-A-B being the shortest

with a partial path distance of 55.

44
42

S

A
D

63 55 B D 71 65 A E

44
42

S

A
D

63 55 B D

80

83 83

C E G

71 65 A E

X

4-Then expanding S-A-B , leads to S-A-B-C, S-A-B-E, and S-A-B-G with partial path distances

of 83, 80, and 83, where S-A-B-G is the shortest complete path, but to be absolutely sure, all

partial paths with partial path distances less than 83 must be expanded. There is no need to extend

the partial path S-A-B-C, because its partial-path distance of 83 is equal to that of the complete

path.

www.manaraa.com

65

44
42

S

A D

63 55 B D

80
83 83

C E G

90

E

71 65 A E

X X

44
42

S

A
D

63 55 B D

80
83 83

C E G

90

E

71 65 A E

78
B

6-Then S-D-A-B is generated from S-D-A with partial path distances 78.

X X

44
42

S

A
D

63 55 B D

80
83 83

C E G

90

E

71 65 A E

78
B

96
B

7-Now S-D-E-B is generated from S-D-E with partial path distances 96. After the seventh

step, partial path S-D-A-B is the shortest partial path.

X X
X

5-Now S-A-D, with a partial path distance of 63, is expanded, leading to partial path S-A-D-E.

At this point, there are six partial paths, with the path S-D-A being the shortest with a partial

path distance of 65.

www.manaraa.com

66

In this particular example, little work is avoided relative to exhaustive

search, British Museum style.

Figure (3.3) will explain the algorithm of Branch-and-Bound search

according to the previous example shown in Figure (3.2), where the numbers

beside the nodes are the length of each path.

44
42

S

A D

63 55 B D

80
83 83

C E G

90

E

71 65 A E

78
B

96
B

103
106 106

C E G

8-Expanding S-D-A-B leads to partial paths terminating at C, G, and E.

X
X

X

X

X X

44
42

103

80

63 55

107
106 106

78

71 65

96

83 83 90

S

A

B

C

D

D

E E G

A

B B

C

D

E

E

G

9- Finally, expanding S-A-B-E, leads to partial path S-A-B-E-D, with a partial-

path distance of 117. Then there is no need to extend any partial path, because

their partial-path distances exceed the complete path (83).

X

X

X
X

X

X X

www.manaraa.com

67

SA
:42

SS
:0

4

3

2

0

SDA
:65

SDE
:71

SABE
:80

SABC
:83

SABG
:83

6

5 SADE
:90

SABE
:80

SABC
:83

SABG
:83

SADE
:90

SDEB
:96

SDABE
:103

8

9

SABG
:83

SAB
:55

SAD
:63

SDA
:65

SDE
:71

SAD
:63

SDA
:65

SABC
: 83

SDE
:71

SABE
:80

10

1

7

Extend SS to D,A

Extend SA to B,D

Extend SDE to B

Extend SDA to B

Extend SAD to E

Extend SD to A, E

Extend SAB to C,E,G

SD
:44

SD
:44

SAB
:55

SDE
:71

SDAB
:78

SABE
:80

SABC
:83

SABG
:83

SADE
:90

SDAB
:78

SABE
:80

SABC
:83

SABG
:83

SADE
:90

SDEB
:96

SDABC
:106

SDABG
:106

Extend SDAB to C,G, E

Extend

SABE

 to D

SABED
:107

Can’t

extend

SABC

SABG

:83

SADE
:90

SDEB
:96

SDABE
:103

SDABC
:106

SDABG
:106

SABED
:107

SUCCESS

SABC
:83

SABG
:83

SADE
:90

SDEB
:96

SDABE
:103

SDABC
:106

SDABG
:106

SAD
:63

44
42

103

80

63 55

107
106 106

78

71 65

96

83 83 90

S

A

B

C

D

D

E E G

A

B B

C

D

E

E

G

Figure3.3: Branch and Bound Search algorithm explanation

www.manaraa.com

68

3.2.1 Adding Underestimates to (Branch and Bound) Search

In some cases, branch-and-bound search can be improved greatly by using

guesses about distances remaining, as well as facts about distances already

accumulated. After all, if a guess about distance remaining is suitable, then that

guessed distance added to the definitely known distance already traversed

should be a good estimate of total path length, e (total path length):

e (total path length) = d (already traveled) + e (distance remaining),

where d (already traveled) is the known distance already traveled, and where e

(distance remaining) is an estimate of the distance remaining.

Surely it makes sense to work hardest on developing the path with the

shortest estimated path length until the estimate is revised upward enough to

make some other path be the one with the shortest estimated path length. After

all, if the guesses were perfect, this approach would keep you on the optimal path

at all times.

In general, however, guesses are not perfect, and a bad overestimate

somewhere along the true optimal path may cause you to wander away from that

optimal path permanently. Note, however, that underestimates cannot cause the

right path to be overlooked. An underestimate of the distance remaining yields an

underestimate of total path length, u(total path length):

www.manaraa.com

69

u (total path length) = d (already traveled) + u (distance remaining),

where d(already traveled) is the known distance already traveled, and

u(distance remaining) is an underestimate of the distance remaining.

Now, if one finds a total path by extending the path with the smallest

underestimate repeatedly, he needs to do no further work once all partial- path

distance estimates are longer than the best complete path distance so far

encountered. One can stop because the real distance along a complete path

cannot be less than an underestimate of that distance. If all estimates of

remaining distance can be guaranteed to be underestimates, searcher cannot

blunder.

When one is working out a path on a highway map, straight-line distance is

guaranteed to be an underestimate. Figure (3.4) shows the straight-line distances

from each city to the goal which are considered as underestimates of distances

remaining (ur). Figure (3.5) shows the already traveled distances at each city (d).

Figure (3.6) shows how straight- line distance helps to make the search efficient,

where branch-and- bound search augmented by underestimates determines that

the path S-A-B-C-G is optimal. The numbers beside the nodes are underestimate

of total path length (ut) which is calculated as follows:

(ut) = accumulated distances(d) + underestimates of distances

remaining(ur).

Underestimates quickly push up the lengths associated with bad paths. In

this example, many fewer nodes are expanded than would be expanded with

www.manaraa.com

71

 branch-and- bound search operating without underestimates.

46 85

76

21

30

23

S
A B

C

D

E G

Figure 3.4: Example of

straight- line distances

between each city and the

goal = (ur).

90
97

107

131

80

57 48

89

67

107

139

98
 90

98

66

172 138

S

A D

A E B

C

D

E E C G

D

B B

G E G

120

Figure 3.5: Example of already traveled distances at each city = (d).

1- In the first step, as before, D and A are generated from S, at node A, Aut = d (48)

+ ur(46) = 94, at node D, Dut = d (57) + ur(76) = 133, A is the node from which to search,

because A’s underestimated path length is 94, which is shorter than that for D, 133.

S

A D 133 94

S

A D

B D
133

96 156

Figure 3.6: Branch and Bound Search augmented by underestimates Example

www.manaraa.com

71

3-Now S-A-B is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to partial paths S-A-B-C, with an

underestimated path length =d(98)+ur(23)= 121,S-A-B-E with an underestimated path length

=d(97)+ur(21)= 118, and to partial path S-A-B-G, with a underestimated path length=

d(131)=131, where S-A-B-G is the shortest complete path, but to be absolutely sure, all partial

paths with partial path distances less than 131 must be expanded.

 2-Expanding A leads to partial paths S-A-B, with an underestimated path length

=d(66)+ur(30)= 96, and to partial path S-A-D, with a underestimated path length=

d(80)+ur(76)=156.

4- Now S-A-B-E is the partial path to extend, as it is the partial path with the minimum

underestimated path length =118. This expansion leads to partial path S-A-B-E-D, with an underestimated

path length =d(107)+ur(76)= 183.

131 121 118

S

A D

B D

E C G

133

156

X

X

121

183

S

A D

B D

E C G

D

133

131

156

X

X

X

www.manaraa.com

72

In the previous example, a great deal of work is avoided. Here is the

modified procedure, with the modification in italic:

To conduct a branch-and-bound search with a lower-bound estimate,

 1-Form a one-element queue consisting of a zero-length path that contains only

the root node.

 2-Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

2.3- Add the remaining new paths, if any, to the queue.

2.4- Sort the entire queue by the sum of the path length and a lower-

5- Finally S-A-B-C is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total distance of 120.

No partial path has a lower-bound distance, so low, so no further search is required.

156

131

183

S

A D

B D

E C G

G D

133

120

X

X

X

X

www.manaraa.com

73

bound estimate of the cost remaining, with least-cost paths in front.

 3- If the goal node is found, announce success; otherwise, announce failure.

Of course, the closer an underestimate is to the true distance, the more

efficiently the search because, if there is no difference at all, there is no chance

of developing any false movement. At the other extreme, an underestimate may

be so poor as to be hardly better than a guess of zero, which certainly must

always be the ultimate underestimate of remaining distance. In fact. ignoring

estimates of remaining distance altogether can be viewed as the special case in

which the underestimate used is uniformly zero.

Figure (3.7) will explain the algorithm of Branch-and-Bound search augmented

by underestimate, according to the previous example:

www.manaraa.com

74

120

118

183

131

156

133 94

121

96

S

A D

B D

E C G

D G

Figure 3.7: Branch and Bound Search augmented by

underestimate/ algorithm explanation.

SS:0

3

2

0

1

Extend SS to D,A

Extend SA to B,D

 to

SAB

: 96

SD

: 133
SAD

: 156

SABE

: 118

SABC

:121

SABG

: 131

SD

: 133

SAD

: 156

Extend SAB to C,E,G

Extend SABE to D

4
SABC

: 121

SABG

: 131

SD

: 133

SAD

: 156

SABED

: 183

Extend SABC to G

5
SABCG

: 120

SABG

: 131

SD

: 133

SAD

: 156

SABED

: 174

Success

SD

: 133

SA

: 94

www.manaraa.com

75

3.3. Branch and Bound Search : Fuzzy Method

The suggested 'Branch and Bound Searching Technique Using Fuzzy

Underestimate' is the same as the existing 'Branch and Bound Searching

Technique Using Crisp Underestimate' in all steps, unless that the suggested

method deals with underestimation of the remaining distance as a fuzzy data ,

taking into consideration the assumption that “the underlying graph is crisp and

the parameters related with its arcs are fuzzy numbers.” (Blue et al,2002).

A fuzzy underestimate of the distance remaining yields a fuzzy

underestimate of total path length, utf (total path length):

utf (total path length) = d (already traveled) + urf (distance remaining),

where d (already traveled) is the known distance already traveled, and urf

(distance remaining) is a fuzzy underestimate of the distance remaining.

Fuzzy underestimation for the remaining distance (fuzzy data) can be processed

according to the following steps as shown in Figure (3.8):

www.manaraa.com

76

3.3.1 Fuzzy underestimate

The following fuzzy data expressions (as estimation of the remaining

distance) can be provided to the searcher:

 Examples:-

1) underestimate may be “approx. 24”

 2) Underestimate may be “at least 24”

 3) Underestimate may be “More than 24”

 4) Underestimate may be “not less than 24” ….Etc.

Searcher knows that :

 These all are fuzzy numbers, then.

 Choose a Triangular Fuzzy Number (TFN) model.

= “approx. a” d)estimateinformation (Fuzzy

Choose α

Take α–cut of “approx. a” = [α1, α2]

Defuzzification of underestimate = α1

Choose a triangular fuzzy number model

Figure 3.8: Fuzzy data processing steps.

www.manaraa.com

77

3.3.1.1 Using a TFN

Each of the above data “estimate” can be modeled as a triangular fuzzy

number, where a triangular fuzzy number specifications can be determined by a

decision maker.

A triangular fuzzy number for “approx. a” can be as shown in Figure (3.9) :

This TFN “approx. a” is denoted by the notation (a1, a , a2). The membership

function of the fuzzy set “approx. a” is given by the following function:-

x

µ

2a 1a 1α 2α a

1

α

0

Figure 3.9: TFN model for “approximately a” or “approx. a”

 0 , if x ≤ a1

 












1

1

aa

ax
 , if a1 ≤ x ≤ a

 












aa

xa

2

2 , if a ≤ x ≤ a2

 0 , if x ≥ a2

µ “approx. a” (x) =

www.manaraa.com

78

3.3.1.2 Choosing α

A fixed "decision parameter" α must be chosen according to confidence in

the source of estimation, or confidence in the value of estimation.  1,0 ,

according to the following:

* If the decision maker (searcher) is highly confident, then he can

choose high value of α, such as: 0.9, or 0.95. …etc.

* But if he is not highly confident, better not to choose a high value of

α , choose. α = 0.8, 0.75, or 0.82. …etc.

3.3.1.3 α-cut of “approx. a” = [α1, α2]

The α-cut of “approx. a” will be the interval  21, , where for any

 x   21, one must have:

 µ “approx. a” (x) ≤ α .

It can be computed as:









)aa(a

)aa(a

222

111





0
 x

µ

2a 1a 1α 2α

1

α

Figure 3.9: TFN model for “approximately a” or “app. a”

www.manaraa.com

79

3.3.1.4 Defuzzification

There are two choices for α:

 1 = underestimate of the fuzzy number “app. a”

 2 = overestimate of the fuzzy number “app. a”

Then searcher must choose the underestimated value 1 .

Example 3.1:-

1- The provided fuzzy data expressions for the searcher (as estimation of

the remaining distance) may be “approx. 27”

2- Consider a TFN “approx. 27” = (24 , 27, 35), as shown in Figure (3.10):

Note: we will consider a1 = (a -3), and a2 = (a+8) in our examples in order

to explain the main idea of our work in a simple way.

3- Consider any choice–parameters α = 0.9 (say).

4- α-cut of “approx. 27” will be:

)aa(a 111  

 24279.024  = 24 + 2.7= 26.7

µ

27

Figure 3.10: TFN model for “approx. 27”

1

0
 35

24

x

www.manaraa.com

81

)aa(a 222  
 27359.035  = 35 – 7.2= 27.8

Therefore, 0.9-cut of “approx. 27” is the interval  8.27,7.26 as shown in Figure

(3.11).

5- Then, we choose finally 1 = underestimate of the fuzzy number “app. 27” =

26.7

The procedure of branch-and-bound search with a fuzzy lower-bound

estimate differs from the basic branch-and-bound search procedures only in the

steps shown in italic bellow:

To conduct a branch-and-bound search with a fuzzy lower-bound estimate,

 1-Form a one-element queue consisting of a zero-length path that contains only

the root node.

 2-Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

0
 26.7

x

µ

35 24 27.8

27

1

0.9

Figure 3.11: TFN model for “approx. 27” with α = 1.9

www.manaraa.com

81

2.2- Reject all new paths with loops.

2.3- Determine fuzzy lower-bound estimate of the cost remaining as

follow:

2.3.1- Take fuzzy estimate of new paths = “approx. a”.

2.3.2- Denote TFN for “ approx. a“ by the appropriate notation (a1,a

,a2).

2.3.3- Choose a fixed “decision - parameter “ α in (0,1), according to

degree of searcher confidence in estimation.

2.3.4- Take a fuzzy lower-bound estimate of the cost remaining

 (lower α-cut of “approx. a”) = 1 , where:

)aa(a 111  

2.4- Add the remaining new paths, if any, to the queue.

2.5- Sort the entire queue by the sum of the path length and a fuzzy

lower-bound estimate of the cost remaining, with least-cost paths

in front.

 3- If the goal node is found, announce success; otherwise, announce failure.

__

www.manaraa.com

82

The following flowchart also explains the procedure of branch-and-bound search

with a fuzzy lower-bound estimate as shown in Figure (3.12):

Initialise Q to contain a
single partial path

containing the start
state.

Does Q’s first path

terminate at the goal?

Is Q

Remove first path from
Q and expand.

Add remaining new paths, if any, to the queue.

Terminate
with failure

Terminate with
success. Return first

path as solution.

Y

Y
N

N

Take fuzzy estimate of new
paths = “approx. a”

Denote TFN for “approx. a” by
).2, a, a1the appropriate notation (a

Choose a fixed

“decision – parameter” α

Take a fuzzy lower-bound estimate
of the cost remaining

Sort the entire queue by the sum of the path length
and a fuzzy lower-bound estimate of the cost

remaining, with least-cost paths in front.

Figure 3.12: flow chart procedure of branch-and-bound search with a fuzzy lower-bound estimate.

www.manaraa.com

83

When a searcher is working out of a path on a highway map, straight-line

distance is guaranteed to be an underestimate, but if searcher has better source

of information about the remaining distance estimation, then search procedure

will be more efficient.

Confidence in underestimation of remaining distance may vary from case

to case; so  also will vary according to the degree of searcher confidence in the

value of underestimation.

3.4 Applications

We will take two applications as examples for the proposed branch and

bound with fuzzy underestimate algorithm.

The first application will adopt the previous example which was explained

for branch and bound augmented by crisp underestimate algorithm (figure 3.5)

as a random net application which will be explained in section 3.4.1.

The second application will adopt the real roads between two major

Jordanian cities as an example, which will be explained in section 3.4.2.

3.4.1 Random net Application

In the following example, if a decision–maker takes a fixed TFN model slope

as (a-3 , a , a+8), at each node he/she will take fuzzy estimate of remaining

distance for new paths = “approx. a" from different information sources = IS,

he/she will choose α according to the degree of searcher confidence in

underestimation, take a fuzzy lower-bound estimate of the cost remaining;

)aa(a 111   , and finally he/she will add new paths and sort the paths by

the sum of the already traveled path length = d and the fuzzy lower-bound

www.manaraa.com

84

 estimate of the remaining distance = ufr to choose the shortest path.

Consider the following net, which is shown in Figure (3.13) The traveler is

at the node S and intends to go to node G. All possible routs are shown in the net

graph, the number against each edge gives the actual distance of that route (node

to node) in some unit . The traveler has no knowledge about the distance

information; but the traveler records the distance he completed.

Figure (3.14) shows the fuzzy estimates of distances remaining (ufr) from

each city to the goal; Figure (3.16) shows how fuzzy underestimates of distances

remaining helps to make the search more efficient, where Branch-and- bound

search augmented by fuzzy underestimates determines that the path S-A-B-C-

G is optimal. The numbers beside the nodes are underestimate of total path

length (uft) = accumulated distances(d) + fuzzy lower-bound estimate of the cost

remaining (α1).

Fuzzy underestimates quickly push up the lengths associated with bad

paths. In this example, fewer nodes are expanded than would be expanded with

branch-and- bound search operating with crisp underestimates.

31

48

57

18

10 65

22

32

S

A B C

D E G

32

Figure 3.13: net

graph with actual

distance of each

route.

www.manaraa.com

85

Part of the tree, which must be explored by the proposed algorithm will be as

shown in Figure (3.15):-

The problem can be solved by applying the proposed algorithm of section 3.2 as

shown in the following example:-

S

A B C

D E G

ufr = 83

ufr = 75

ufr = 131 ufr = 91

ufr = 61

ufr = 22

Figure 3.14: Example for fuzzy estimates of remaining

distances (ufr) between each city and the goal .

IS = G citizen, ufr =22, α = 0.9,

TFN(19, 22, 30), α1 = 21.7,
uft =d(98)+ α1(21.7) = 119.7

IS = Taxi driver, ufr =60, α = 0.7,

TFN(57, 60, 68), α1 =59.1,

uft =d(66)+ α1(59.1) = 125.1

131

120

IS = Old man, ufr =83, α = 0.5,
TFN(80, 83, 91), α1 = 81.5

uft =d(48)+ α1(81.5) = 129.5

IS= Official sign, ufr =131, α = 0.95,
TFN(128, 131, 139), α1=130.85

uft =d(57)+ α1(130.85) =187.85

IS = Taxi driver using path daily,

 ufr=131, α = 0.9,
TFN (128, 131, 139), α1 = 130.7,

 uft =d(80)+ α1(130.7) = 201.7

 IS = D citizen, ufr =90, α = 0.8,

TFN(87, 90, 98), α1 = 89.4,
uft =d(97)+ α1(89.4) = 186.4

S

A

B

C

D

E

G

G

D

Figure 3.15: The explored part of the tree.At each node there is, specific source for estimated

information =IS, who (which) will give fuzzy cost underestimate of remaining distance = “approx.
a" = a, decision maker will choose an appropriate α, TFN model, & lower α-cut for that node.

IS = Old man, ufr =83, α = 0.5,

TFN(80, 83, 91), α1 = 81.5

uft =d(48)+ α1(81.5) = 129.5

IS= Official sign, ufr =131, α=0.95,

TFN(128, 131, 139), α1=130.85

uft =d(57)+ α1(130.85) =187.85

1- In the first step, D and A are generated from S, at node A if the information source (IS) was an

old man, who gives a fuzzy estimate of remaining distance as a = "approx. 83", decision maker can

choose TFN as (80, 83, 91),and α=0.5 to produce α1=81.5 which will be add to the distance already

traveled d = 48, to produce the fuzzy underestimate of total path length uft =129.5.

While node D information source about remaining distance (IS) was an Official sign with a =

"approx. 131", decision maker can choose TFN as (128, 131, 139), and α = 0.95 to produce

α1=130.85 which will be add to the distance already traveled d =57, to produce the fuzzy

underestimate of total path length uft =187.85.

A is the node from which to search, because A’s fuzzy underestimated path length is 129.5,

which is shorter than that for D, 187.85.

S

A
D

www.manaraa.com

86

Figure 3.16: Example for Branch and Bound Search augmented by fuzzy underestimates

 2- Expanding A leads to partial paths S-A-B, with a fuzzy underestimated path length of 125.1,

and to partial path S-A-D, with a fuzzy underestimated path length of 201.7

.

S

A
D

IS = Taxi driver using path daily, ufr=131, α = 0.9,

TFN (128, 131, 139), α1 = 130.7,

 uft =d(80)+ α1(130.7) = 201.7

IS = Taxi driver, ufr =60, α = 0.7,

TFN(57, 60, 68), α1 =59.1,

uft =d(66)+ α1(59.1) = 125.1

B D

4- Finally, S-A-B-C is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total

distance of 121. No partial path has a lower-bound distance so low, so no further search is required.

3- Now S-A-B is the partial path to extend, as it is the partial path with the minimum fuzzy

underestimated path length. This expansion leads to partial paths S-A-B-C, with a fuzzy

underestimated path length of 119.7, partial path S-A-B-E, with a fuzzy underestimated path length

of 186.4, and to the shortest complete path, S-A-B-G, with a total distance of 131, but to be

absolutely sure, all partial paths with partial path distances less than 131 must be expanded. There

is no need to extend the partial path S-A-B-E, because its partial-path distance of 186.4 is more

than that of the complete path.

 .

S

A
D

D B

C E

IS = D citizen, ufr =90, α = 0.8,

TFN(87, 90, 98), α1 = 89.4,
uft =d(97)+ α1(89.4) = 186.4

IS = G citizen, ufr =22, α = 0.9,

 TFN(19, 22, 30), α1 = 21.7,
uft =d(98)+ α1(21.7) = 119.7

131

G

S

A
D

D B

G 121

186.4

C E

131

G

X

X

www.manaraa.com

87

Figure (3.17) explains the algorithm of Branch-and-Bound search augmented by

fuzzy underestimate, according to the previous example:

Figure 3.17: Branch and Bound Search augmented by fuzzy underestimate/ algorithm

explanation

3.4.2 Roads between Two Jordanian Cities Application

In the following example, we will adopt a real life example; i.e. real roads

between two major Jordanian cities; say from Al Karak to Irbid according to an

official map of Jordan, as shown in Figure (3.18), where one can plan a route

from Al Karak as a start node (S) to Irbid as a goal node (G) in the following

map.

SS:0

3

2

0

1

Extend SS to D,A

Extend SA to B,D

 to

SAB
: 125.1

SD
: 187.85

SAD
: 201.7

SABC

: 119.7

SABG
: 131

SABE
: 186.4

SD
: 187.85

SAD
: 201.7

Extend SAB to C,E,G

Extend SABC to G

!

SA
: 129.5

SD
: 187.85

4
SABCG

: 120

SABG
: 131

SABE
: 186.4

SD
: 187.85

SAD
: 201.7

SUCCES

S!

IS = G citizen, ufr =22, α = 0.9,

TFN(19, 22, 30), α1 = 21.7,
uft =d(98)+ α1(21.7) = 119.7

IS = Taxi driver, ufr =60, α = 0.7,
TFN(57, 60, 68), α1 =59.1,

uft =d(66)+ α1(59.1) = 125.1

131

120

IS = Old man, ufr =83, α = 0.5,
TFN(80, 83, 91), α1 = 81.5

uft =d(48)+ α1(81.5) = 129.5

IS= Official sign, ufr =131, α = 0.95,
TFN(128, 131, 139), α1=130.85

uft =d(57)+ α1(130.85) =187.85

IS = Taxi driver using path daily,

 ufr=131, α = 0.9,
TFN (128, 131, 139), α1 = 130.7,

 uft =d(80)+ α1(130.7) = 201.7

 IS = D citizen, ufr =90, α = 0.8,

TFN(87, 90, 98), α1 = 89.4,
uft =d(97)+ α1(89.4) = 186.4

S

A

B

C

D

E

G

G

D

www.manaraa.com

88

Suppose that Mr. X is trying to find some path from Al Karak to Irbid using

a highway map such as the one shown in Figure (3.18). The starting point in Al

Karak denoted as Kr, which might be called (start node), and ending point in

Irbid denoted as Ir, which might be called (goal node), other cities (nodes) are

denoted as shown in the key table of Figure (3.18).

34

36

16

13

1 Rm

Sw

Db Zm

Qt

Ir

Mq

Zg

Jr

St

Am

Md

Kr

Tf

22

16

76

15

28

27

31

57

36

Jd

31

34

58

60

28

34

33

Figure 3.18: net graph from Karak

to Irbid with actual distance of each

route.

Cities (nodes) are denoted as shown

in the key table

Key table

City Name Notation
 City

Name
Notation

Jurf Al

Daraweesh
Jd

Seweleh Sw

Qutraneh
Qt

Al Salt St

Zmailih
Zm

 Jarash,
Jr

Dhiban
Db

 Ramtha
Rm

Madaba Md Mafraq
Mq

Aamman Am Zarga
Zg

 Azraq
Az

www.manaraa.com

89

The traveler is at Al Karak, and intends to go to Irbid. All possible routs are

shown in the net graph, the number against each edge gives the actual distance

of that route (node to node) in kilometers. The traveler has no knowledge about

the distance information, but the traveler records the distance he/she completed.

Figure (3.19) shows the fuzzy estimates of remaining distances from each

city (or intersection node) to Irbid (the goal) , where the number against each

edge gives that estimated distances in kilometers = (efr).

With looping paths eliminated, one can arrange all possible paths from the

start node (Kr) in a search tree. Figure (3.20) shows a search tree that consists

of nodes denoting the possible paths that lead outward from the start node Al

Karak (S) of the net shown in Figure (3.18), the number against each edge gives

the actual distance of that route (node to node) in kilometers.

135 173

141

170

80
60

70 15

Am Sw Zm
Kr

Db

Qt

St Rm

Ir

Figure 3.19: fuzzy estimates of remaining distances from each city (or intersection

node) to Irbid =efr. Cities (nodes) are denoted as shown in the key table of figure (3.18).

110 Md

40

Jr

Zg 110

www.manaraa.com

91

If a decision–maker takes a fixed TFN model slope as (a-3 , a , a+8), at

each node he/she will take fuzzy estimate of remaining distance for new paths

= efr = “approx. a" from different information sources = IS, choose α according

to degree of searcher confidence in estimation, take a fuzzy lower-bound

estimate of the cost remaining;)aa(a 111   , and finally he/she will add

new paths, and sort the paths by the sum of the already traveled path length =

d and the fuzzy lower-bound estimate of the remaining distance = ufr to

choose the shortest path.

Figure 3.20: A search tree that consists of nodes denoting all possible paths those lead outward from

the start node Al Karak (S) of the net shown in figure (3.18).

28

Md

Zg

Am

Sw

I2

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

31

Zm

Zg

Am

Sw

I2

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

57

I4

28 31

QtI

6

Zg

Am

Sw

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

Zg

Am

Sw

I2

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

Db

Md

31

31

Zm

r 28 57

36

Kr

34 34

www.manaraa.com

91

Figure (3.21) shows how fuzzy underestimates of distances remaining helps

to make the search more efficient, where Branch-and- bound search augmented

by fuzzy underestimates determines that the path Kr- I4- Md- Am- Sw- Jr- Rm- Ir is

optimal. The numbers beside the nodes are underestimate of total path length

(uft) = accumulated distances(d) + fuzzy lower-bound estimate of the cost

remaining (α1).

 Fuzzy underestimates quickly push up the lengths associated with bad

paths. In this example, fewer nodes are expanded than would be expanded with

branch-and- bound search operating with crisp underestimates.

Part of the tree, which must be explored by the proposed algorithm will be as

shown in figure (3.21):-

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,
TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Figure 3.21: The explored part of the tree.At each node there is, specific source for estimated

information =IS, who (which) will give fuzzy cost estimate of remaining distance = “approx. a" = a,

decision maker will choose an appropriate α, TFN model, & lower α-cut for that node.

Md

Am

Sw

I2

Jr

Rm

Ir

St

13

27

15

28

16

Zm

Db 31

Qt

Kr

 34

IS = Official sign, efr =135, α = 0.95,
TFN(132, 135, 143), α1 =134.84,

uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25
uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,
TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,
TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,
uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,

TFN(37, 40, 48), α1 =39.1,

uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,
TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,
α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

180

www.manaraa.com

92

The problem can be solved by applying the proposed algorithm of section 4.2 as

in the following example:-

Figure 3.22: Example for Branch and Bound Search augmented by fuzzy underestimates

Db Qt

Kr

34 34

IS = Bus Driver, efr =170, α = 0.75,
TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,
TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

1- In the first step, as before, Db and Qt are generated from Kr(S), at node Db if the information

source (IS) was a Farmer, who gives a fuzzy estimate of remaining distance as a = "approx. 140",

decision maker can choose TFN as (137, 140, 148),and α=0.4 to produce α1=138.2 which will be

added to the distance already traveled d = 34, to produce the fuzzy underestimate of total path

length uft =193.85.

While at node Qt information source about remaining distance (IS) was a Bus Driver with a =

"approx. 170", decision maker can choose TFN as (167, 170, 178), and α = 0.75 to produce

α1=169.25 which will be add to the distance already traveled d =34, to produce the fuzzy

underestimate of total path length uft =206.25.

Db is the node from which to search, because Db ’s fuzzy underestimated path length is 193.85,

which is shorter than that for Qt, 206.25.

Md Zm

Db

28 31

Qt

Kr

34

206.25

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,
uft =d(62)+ α1(134.84) = 196.84

IS = taxi Driver, efr =110, α = 0.7,
TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

 2-Expanding Db eads to partial paths Kr- Db - Md, with a fuzzy underestimated path length of

174.1, and to partial path Kr- Db - Zm, with a fuzzy underestimated path length of 196.84

34

IS = Police Man, efr =80, α = 0.9,
TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

31

Db

28 31

Kr

34 34

Zm

196.84

Qt

206.25

3-Now Kr- Db - Md is the partial path to extend, as it is the partial path with the minimum fuzzy

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am with a fuzzy

underestimated path length of 175.7.

www.manaraa.com

93

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

Md

Am

Sw

I2

13

31

Zm

Db

28 31

Qt

Kr

34 34

196.84

206.25

Zg

22

IS = Old Man, efr =110, α = 0.4,
TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

4- Now Kr- Db - Md- Am is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am- Sw

, with a fuzzy underestimated path length of 168.4, and to partial Kr- Db - Md- Am- Zg, with a

fuzzy underestimated path length of 226.2.

Kr- Db - Md- Am- Sw is the partial path to extend, as it is the partial path with the minimum

underestimated path length.

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

Sw

Jr St

13

27

15

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,
uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25
uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,
TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,
uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,
TFN(37, 40, 48), α1 =39.1,

IS = Official Sign, efr =70, α = 0.95,
TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

 5-Expanding Sw leads to partial paths Kr- Db- Md- Am- Sw- St, with a fuzzy underestimated

path length of 193.85, and to partial path Kr- Db - Md- Am- Sw-Jr, with a fuzzy underestimated

path length of 175.1

www.manaraa.com

94

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Ar

Sw

Jr

mR

St

13

27

 15

28

31

Zm

Db

28 31

Qt

Kr

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,

TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,

TFN(37, 40, 48), α1 =39.1,
uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,

TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,

α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

6- Now Kr- Db - Md- Am- Sw- Jr is the partial path to extend, because it is the partial path with

the minimum underestimated path length. This expansion leads to partial path Kr- Db - Md- Am –

Sw -Jr- Rm, with a fuzzy underestimated path length of 178.7.

www.manaraa.com

95

Figure (3.23) explains the algorithm of Branch-and-Bound search

augmented by fuzzy underestimate, according to the previous example.

IS = Engineer, efr =60, α = 0.8,
TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

Sw

Jr

Rm

Ir

St

13

27

15

28

16

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,

TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,
TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,

TFN(37, 40, 48), α1 =39.1,
uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,

TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,

α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

180

7- Finally, Kr- Db - Md- Am- Sw- Jr- Rm is the partial path to extend, as it is the partial path with

the minimum underestimated path length. This expansion leads to a complete path, Kr- Db - Md-

Am- Sw- Jr- Rm- Ir, with a total distance of 180. No partial path has a lower-bound distance so

low, so no further search is required.

www.manaraa.com

96

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

Sw

I2

Jr

Rm

Ir

St

13

27

15

28

16

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,
uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,

TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,
TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,
TFN(37, 40, 48), α1 =39.1,

uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,

TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,

α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

180

Kr
:0

4

3

2

0

6

5

1

7

Extend Kr to Db, Qt

Extend KrDb to Md, Zm

Extend KrDbMdAmSw
to St,Jr

Extend KrDbMd

 to Am

Extend KrDbMdAm

to Sw,Zg.

KrQt:
206.25

KrDbZm

:196.84

KrDbMd

:174.1

KrQt:
206.25

KrDbZm

:196.84

KrDbMdAm

:175.7

KrQt:
206.25

KrDb:
193.85

KrDbZm

:196.84

KrDbMdAmZg

:226.2

KrDbMdAmSw

:168.4

KrQt

:206.25

KrDbMdAmSwSt

: 193.85

KrDbMdAmSwJr

:175.1

KrQt

:206.25

KrDbZm

:196.84

KrDbMdAmZg

:226.2

Extend
KrDbMdAmSwJr

to Rm

KrDbMdAmSwSt

: 193.85

KrDbMdAmSwJrRm

:178.7

Extend
KrDbMdAmSwJrRm

to Ir

KrDbMdAmSwSt

: 193.85
KrDbMdAmSwJrRmIr

:180
SUCCESS

KrQt

:206.25

KrDbZm

:196.84

KrDbMdAmZg

:226.2

KrQt

:206.25

KrDbZm

:196.84
KrDbMdAmZg

:226.2

Figure 3.23: Branch and Bound Search augmented by fuzzy underestimate/ algorithm explanation

www.manaraa.com

97

3.5 Conclusion

In this chapter a new type of Branch and Bound searching technique using

fuzzy underestimates is proposed. The objective of this work is to deal with the

imprecise data involved in different kind of existing searching techniques in a

more efficient way.

In general Branch-and-Bound search is suitable when the tree is big and

bad paths turn distinctly bad quickly.

Branch-and-Bound search with a guess is suitable when there is a good

lower-bound estimate of the distance remaining to the goal, where

underestimates quickly push up the lengths associated with bad paths. In Figure

(3.6), many fewer nodes are expanded (10 nodes) than which were expanded

with branch-and- bound search operating without underestimates (17 nodes) as

shown in Figure (3.2) for the same problem.

In choosing heuristics, we usually consider the heuristic that reduces the

number of nodes that need to be examined in the search tree. This can be viewed

as the reduction of effective branching of search.

In analyzing search methods, it is important to examine the Effective

Branching Factor (b*) of each method because it is a suitable way to characterize

the quality of an heuristic, where a well - designed heuristic would have a value

of b* close to 1, allowing fairly large problem to be solved (Russell& Norvig,

2003; Luger, 2005).

www.manaraa.com

98

When evaluating B&B heuristic search strategies which are discussed in

this chapter in term of EBF (b*) according to the results shown in Table (3.1) and

the corresponding chart shown in Figure (3.24), we can note that:

 B&B with crisp underestimate search technique achieve better efficiency

than regular B&B search technique, where b* was decreased from 1.67 to

1.4 because underestimation increases the efficiency of B&B by enabling

it to be more informed.

 Adding Fuzzy underestimate to B&B search technique achieve better

efficiency than adding crisp underestimate to B&B search technique,

where b* was decreased from 1.4 to 1.35 (Figure 3.16) and to 1.13 (Figure

3.21) because fuzzy underestimation increases the efficiency of B&B with

crisp underestimate by enabling it to be more informed.

 Some Fuzzy underestimates can achieve better efficiency than other

Fuzzy underestimates where the more informed Fuzzy underestimates

can achieve the better efficiency. Fuzzy underestimation achieved b* =

1.35 in case of Figure (3.16) but it achieved a better b* = 1.13 in the case

of Figure (3.21). In general adding Fuzzy underestimates can achieve

better efficiency than adding crisp underestimates, where Effective

Branching Factor for Fuzzy Underestimated B&B are always better (less)

than that for crisp algorithms especially when the number of nodes is high.

Obviously the closer the Fuzzy underestimate is to the true remaining

solution cost the more efficient the B&B search will be.

 B&B Augmented by Fuzzy Underestimate search technique is complete,

optimal, nonredundant, and more informed than other algorithms.

www.manaraa.com

99

Table 3.1: Evaluation of Heuristic B&B search strategies in terms of effective

branching factor (b*).
d: is the depth of the solution,
N: is the total number of nodes generated by each strategy for a particular problem.

A well - designed heuristic would have a value of b* close to 1, allowing fairly large problem to
be solved .

Figure 3.24: Evaluation of Heuristic B&B search strategies in terms of effective branching
factor (b*) according to the results shown in table (3.1).

Figure No. d N b* Type of Search

3.2 4 17 1.673 Crisp B&B

3.6 4 10 1.403 B&B with Crisp Underestimation

3.16 4 9 1.352 B&B with Fuzzy Underestimation
(Application 1)

3.21 7 12 1.135 B&B with Fuzzy Underestimation
(Application 2)

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

Crisp B & B B & B with Crisp Underestimation

B & B with Fuzzy Underestimation (Application 1)

B & B with Fuzzy Underestimation (Application 2)

www.manaraa.com

111

4.1 Introduction
A* algorithm was first presented by Hart et al (Hart, et al 1968; 1972).

(Rich & Knight,2000). A* is based on one further modification to the Branch and

Bound technique augmented by underestimates which again improves search

efficiency, by recognizing and removing redundant paths from the search queue

according to the Dynamic Programming Principle (Winston, 2000).

A* has attracted a great deal of attention. It is one of the fundamental

algorithms of artificial intelligence. A* is the name given to the algorithm

where the e(node) function is admissible. In other words, it is guaranteed

to provide an underestimate of the true cost to the goal. A* is optimal and

complete. In other words, it is guaranteed to find a solution, and that

solution is guaranteed to be the best solution (Coppin, 2004).

A* may use all the available memory in a matter of minutes. After that

the search practically cannot proceed although the user would find it

acceptable that the algorithm would run for hours or even days (Bratko,

1998).

In this work a new type of A* searching technique using fuzzy logic is

proposed. The objective of this work is to deal with the imprecise data involved

in existing A* searching techniques in a more efficient way and thus to suggest

improved version of A* searching techniques under uncertainty which will be

www.manaraa.com

111

 helpful in many real life problems of computer science, especially in AI field.

In this chapter we consider a search problem and its solution by the existing

crisp method of A* search. We proved that this method can be enhanced using

fuzzy theory. Consequently we proposed a new method of A* with fuzzy

underestimates, introducing the corresponding algorithm, and explaining the

algorithm by two applications (examples).

We will explain in details A* Search (Crisp Method); by explaining A*

procedure, providing crisp A* algorithm, and crisp branch-and-bound

procedure with dynamic programming algorithm giving : Search Examples,

and Search algorithm explanations for both procedures.

Then we are to explain in details A* Search (Fuzzy Method) by providing the

suggested algorithm explanation giving : A* Fuzzy Method algorithm, and

flow chart explanation.

Finally, we are to explain in details two applications (examples) for the

suggested algorithm.

4.2 Dynamic Programming

Dynamic Programming (DP) is sometimes called the forward-backward or,

when using probabilities, the Viterbi algorithm. Created by Richard Bellman (1956),

Dynamic programming addresses the issue of restricted memory search in

problems composed of multiple interacting and interrelated subproblems (Luger,

2005).

Now let us consider a different approach to improve on basic branch-and-

bound search. Look at Figure (4.1). The root node, S, has been expanded,

producing partial paths S-A and S-D. For the moment, let us use no

www.manaraa.com

112

 underestimates for remaining path length.

Figure 4.1: An illustration of the dynamic programming principle. The numbers
beside the node are accumulated distances.

Because S-A is shorter than S-D. S-A is extended first, leaving three paths:

S-A-B, S-A-D, and S-D. Then, S-D will be extended, because it is the partial path

with the shortest length.

But, what about the path S-A-D? Will it ever make sense to extend it? Clearly,

it will not. Because there is one path to D with length 4, it cannot make sense to

work with another path to D with length 8. The path S-A-D should be forgotten

forever; it cannot produce a winner.

This example illustrates a general principle. Assume that the path from a

starting point, S, to an intermediate point, I, does not influence the choice of paths

for traveling from I to a goal point, G. Then the minimum distance from S to G

through I is the sum of the minimum distance from S to I and the minimum

distance from I to G. Consequently, the strangely named dynamic-programming

principle holds that, when you look for the best path from S to G, you can ignore

all paths from S to any intermediate node, I, other than the minimum-length path

from S to I.

The dynamic-programming principle (some times called Path Deletion) can

D

D

S

A

B

7 8

4

Expanded next

Never expanded

www.manaraa.com

113

be stated as:
The best way through a particular, intermediate place is the best way to it

from the starting place, followed by the best way from it to the goal. There is no

need to look at any other paths to or from the intermediate place (Winston, 2000;

Doyle, Dec 5, 2005).

 So:

Minimum distance from S to G (through I) = min. distance from S to I
+ min. distance from I to G

More precisely:

 IF the QUEUE contains:
 a path P terminating in I, with cost = cost_P
 a path Q containing I, with cost = cost_Q

 cost_P ³ cost_Q

 THEN
 delete P

Figure 4.2 A more precisely illustration of the dynamic programming principle.
 The numbers beside the node are accumulated distances.

The branch-and-bound procedure, with dynamic programming included

differs from the basic branch-and-bound procedure only in the steps shown in

bold italic bellow:

__

To conduct a branch-and-bound search with dynamic programming,

1- Form a one-element queue consisting of a zero-length path that contains only

the root node.

P 7 8

S

D A

B D 9 6 A E

Q

X

www.manaraa.com

114

2- Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

2.3- Add the remaining new paths, if any, to the queue.

2.4- If two or more paths reach a common node, delete those paths

except the one that reaches the common node with the minimum

cost.

2.5- Sort the entire queue by path length with least-cost paths in front.

3- If the goal node is found, announce success; otherwise, announce failure.

__

Figure 4.3 shows the effect of using the dynamic-programming principle,

together with branch-and-bound search, on the map-traversal problem, where the

numbers beside the nodes denotes the length of each path (cost). Four paths are

cut off quickly, leaving only the dead-end path to node C and the optimal path, S-

D-E-F-G.

Figure 4.3: Branch and Bound with dynamic-programming principle Search Example.

44
42

S

A D

www.manaraa.com

115

44
42

S

A
D

63 55 B D

80

83 83

C E G

71 65 A E

X X

X

4-Then expanding S-A-B , leads to S-A-B-C, S-A-B-E, and S-A-B-G with partial path distances

of 83, 81, and 83, partial path S-A-B-E can be deleted it’s partial-path distance of 81 is more than

that of S-D-E(71), now S-A-B-G is the shortest complete path, but to be absolutely sure, all

partial paths with partial path distances less than 83 must be expanded. Also there is no need to

extend the partial path S-A-B-C, because its partial-path distance of 83 is equal to that of the

complete path.

X

1-In the first step, the partial-path distance of S-A is found to be 42, and that of S-D is found to be

44; partial path S-A is therefore selected for expansion.

2- Next, S-A-B and S-A-D are generated from S-A with partial path distances of 55 and 63,

partial path S-A-D can be deleted because its partial-path distance of 63 is more than that of. S-D

(44).

44
42

S

A D

63 55 B D X

3- Now S-D, with a partial path distance of 44, is expanded, leading to partial paths S-D-A and

S-D-E. At this point, partial path S-D-A can be deleted as it’s partial-path distance of 65 is more

than that of S-A-B(55), then there are only two partial paths, with the path S-A-B being the

shortest with a partial path distance of 55.

44
42

S

A
D

63 55 B D 71 65 A E X X

www.manaraa.com

116

In this particular example little work is avoided relative to branch and

bound, where number of steps has been reduced to 5 steps instead of 9.

Figure (4.4) explains the algorithm of branch-and-bound search with

dynamic programming according to the previous example shown in figure (4.3),

where the numbers beside the nodes are the length of each path:

5- Now S-D-E-B is generated from S-D-E with partial path distances 96, partial path S-D-E-B can

be deleted it’s partial-path distance of 96 is more than that of the shortest complete path S-A-B-G.

44
42

S

A
D

63 55 D

80
83

83

G

71 65 A E X

96

X

X X

B

C E B

X

www.manaraa.com

117

Figure 4.4: branch-and-bound search with dynamic programming algorithm explanation.

4.2.1 A* search

The A* procedure is Branch-and-Bound search, with an Underestimate of

remaining distance, combined with the Dynamic Programming principle. If the

estimate of remaining distance is a lower-bound on the actual distance, then A*

produces optimal solutions generally, the estimate may be assumed to be lower-

bound estimate, unless specifically stated otherwise, implying that A* solutions

are normally optimal.

44
42

S

A
D

63 55 D

80
83

83

G

71 65 A E X

96

X

X X

B

C E B

SA
:42

SS
:0

4

3

2

0

6

5

SAB
:55

SDA
:65

SDE
:71

SDE
:71

SABE
:80

SABC
: 83

SABG
: 83

1

Extend SS to D,A

Extend SA to B,D

Terminate SDEB, Can’t extend SABC

 Terminate SABE, Extend SDE to B

Terminate SAD, Extend SD to A,

E

Terminate SDA, Extend SAB to C,E,G

SD
:44

SD
:44

SAB
:55

SABC
:83

SABG
:83

SDEB
:96

SABG
:83

SUCCESS

SAD
:63

www.manaraa.com

118

The A* algorithm operates in the same manner as Branch-and-Bound

search augmented by underestimate, so it employs the following function to

calculate underestimate of total path length, ut = (total path length):

u (total path length) = d (already traveled) + u (distance remaining),

where d = d(already traveled) is the known distance already traveled, and where

ur = u(distance remaining) is underestimate of the distance remaining (Coppin,

2004).

The A* procedure differs from the basic branch-and-bound with a lower-

bound estimate procedure only in the steps shown in bold italic bellow:

To conduct A* search,

1- Form a one-element queue consisting of a zero-length path that contains only

the root node.

2- Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

2.3- Add the remaining new paths, if any, to the queue.

2.4- If two or more paths reach a common node, delete those paths

except the one that reaches the common node with the minimum

cost.

www.manaraa.com

119

2.5- Sort the entire queue by the sum of the path length and a lower-bound

estimate of the cost remaining, with least-cost paths in front.

3- If the goal node is found, announce success; otherwise, announce failure.

__

Now, if the straight-line distances from each city to the goal is as shown in

Figure (4.5) are considered as an underestimates of distances remaining (ur),

and the already traveled distances to each city from the source = (d) is considered

as shown in Figure (4.6), then Figure (4.7) will show how A* will determine that

the path S-A-B-C-G is optimal. The numbers beside the nodes are the

underestimate of total path length (ut).

 (ut)= accumulated distances(d) + underestimates of distances

remaining(ur).

46 85

76

21

30

23

S
A B

C

D

E G

Figure 4.5: Example of

straight- line distances

between each city and the

goal = (ur).

www.manaraa.com

111

Figure 4.7: A* Search Example.

57
48

138

97

80 66

107 172 139

107

76 89

98 98

131 90

S

A

B

C

D

D

E E G

A

B B

C

D

E

E

G

120

G

Figure 4.6: Example of already traveled distances at each city = (d).

133 94

S

A D

1- In the first step, D and A are generated from S, at node A, Aut = d (48) + ur(46) = 94,

at node D, Dut = d (57) + ur(76) = 133, A is the node from which to search, because A

underestimated path length is 94, which is shorter than that for D, 133.

133

S

A
D

156 96 B D
X

2- Expanding A leads to partial paths S-A-B, with an underestimated path length

=d(66)+ur(31)= 96, and to partial path S-A-D, with a underestimated path length=

d(81)+ur(76)=156, partial path S-A-D can be deleted as its partial-path distance of 156 is more

than that of. S-D (133).

www.manaraa.com

111

133

D

118 121 131

C E G

S

A

156 B D

X

3- Now S-A-B is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to partial paths S-A-B-C, with an underestimated

path length =d(98)+ur(23)= 121,S-A-B-E with an underestimated path length =d(97)+ur(21)= 118,

and to partial path S-A-B-G, with a underestimated path length= d(131)=131, where S-A-B-G is

the shortest complete path, but to be absolutely sure, all partial paths with partial path distances less

than 131 must be expanded.

133

D

183

131
C E G

S

A

156 B D

D

121

X

4- Now S-A-B-E is the partial path to extend, as it is the partial path with the minimum

underestimated path length =118. This expansion leads to partial path S-A-B-E-D, with an

underestimated path length =d(117)+ur(76)= 183, partial path S-A-B-E-D can be deleted because

its partial-path distance of 183 is more than that of. S-D (133).

X

www.manaraa.com

112

Figure (4.8) will explain the algorithm of A* search, according to the previous

example:

120 G

133

D

183

131 C E G

S

A

156 B D

D

5- Finally S-A-B-C is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total

distance of 120. No partial path has a lower-bound distance so low, so no further search is required.

X

X

121
118

96

94

120 G

133

D

183

131 C E G

S

A

156 B D

D

X

X

SS:0

3

2

0

1

Extend SS to D,A

Extend SA to B,D

 to

SAB
: 96

SD
: 133

SAD
: 156

SABE

: 118

SABC
:121

SABG
: 131

SD
: 133

Terminate SAD,Extend SAB to C,E,G

Extend SABE to D

!

SA
: 94

SD
: 133

4
SABC

: 121

SABG
: 131

SD
: 133

SABED
: 183

Terminate SABED,Extend SABC to G

S!

5
SABCG

: 120

SABG
: 131

SD
: 133

SUCCES

S!

www.manaraa.com

113

Figure 4.8: A* Search / algorithm explanation.

4.3 Search : Fuzzy Method

The suggested “A* Searching Technique Using Fuzzy Underestimate” is the

same as the existing “ A* Searching Technique Using Crisp Underestimate” in all

its steps, unless the suggested method deals with underestimation of the

remaining distance (Ur) as a fuzzy data , taking into consideration the assumption

that “the underlying graph is crisp and the parameters related to its arcs are fuzzy

numbers.” (Blue et al,2002).

A fuzzy underestimate of the distance remaining yields a fuzzy

underestimate of total path length, uft (total path length):

uft (total path length) = d (already traveled) + ufr (distance remaining),

Were d (already traveled) is the known distance already traveled, and

ufr(distance remaining) is a fuzzy underestimate of the distance remaining.

Fuzzy underestimation for the remaining distance (fuzzy data) can be processed

according to the previous steps, as shown in Fgure (3.8), and as detailed in

section (3.2.1).

www.manaraa.com

114

The suggested procedures of A* search with a fuzzy lower-bound estimate are

different from the basic A* search procedures only in the steps shown in italic

bellow:

To conduct A* search with a fuzzy lower-bound estimate,

1- Form a one-element queue consisting of a zero-length path that contains only

the root node.

2- Until the first path in the queue terminates at the goal node or the queue is

empty,

2.1- Remove the first path from the queue; create new paths by extending

the first path to all the neighbors of the terminal node.

2.2- Reject all new paths with loops.

2.3- Determine fuzzy lower-bound estimate of the cost remaining as

follows:

2.3.1- Take fuzzy estimate of new paths = “approx. a”.

2.3.2- Denote TFN for “ approx. a“ by the appropriate notation (a1 , a ,

a2).

2.3.3- Choose a fixed “decision - parameter “ α in (0,1), according to

degree of searcher confidence in estimation.

2.3.4- Take a fuzzy lower-bound estimate of the cost remaining

 (lower α-cut of “approx. a”) = 1 , where:

)aa(a 111  

2.4- Add the remaining new paths, if any, to the queue.

www.manaraa.com

115

2.5- If two or more paths reach a common node, delete those paths except

the one that reaches the common node with the minimum cost.

2.6- Sort the entire queue by the sum of the path length and a lower-bound

estimate of the cost remaining, with least-cost paths in front.

3- If the goal node is found, announce success; otherwise, announce failure.

www.manaraa.com

116

The following flow chart also explain the procedure of A* search with a fuzzy

lower-bound estimate as shown in Fgure (4.9):

Initialise Q to contain a
single partial path

containing the start
state.

Does Q’s first path

terminate at the goal?

Is Q

Remove first path from
Q and expand.

Add remaining new paths, if any, to the queue.

Terminate
with failure

Terminate with
success. Return first

path as solution.

Y

Y
N

N

Take fuzzy estimate of new
paths = “approx. a”

Denote TFN for “approx. a” by
the appropriate notation (a1, a, a2).

Choose a fixed

“decision – parameter” α

Take a fuzzy lower-bound estimate
of the cost remaining

Sort the entire queue by the sum of the path length
and a fuzzy lower-bound estimate of the cost

remaining, with least-cost paths in front.

If two or more paths reach a common node, delete
those paths except the one that reaches the common

node with the minimum cost.

Figure 4.9: flow chart procedure of A* search with a fuzzy lower-bound estimate.

www.manaraa.com

117

When a searcher is working out a path on a highway map, straight-line

distance is guaranteed to be an underestimate, but if searcher has better source

of information about the remaining distance estimation , then search procedure

will be more efficient.

Confidence about underestimation of remaining distance may vary from

case to case; so  also will vary according to degree of searcher confidence in

value of underestimation.

4.4 Applications

We will consider two applications as examples for the proposed A* with

fuzzy underestimate algorithm.

 The first application will adopt the previous example which was explained

for branch and bound augmented by crisp underestimate algorithm (Figure 4.6)

as a random net application which will be explained in section 4.4.1.

The second application will adopt the real roads between two major

Jordanian cities as an example, which will be explained in section 4.4.2.

4.4.1 Random net Application

In the following example, if a decision–maker takes a fixed TFN model slope

as (a-3 , a , a+8), at each node he/she will take fuzzy estimate of remaining

distance for new paths = “approx. a" from different information source = IS,

choosing α according to the degree of searcher confidence in underestimation,

taking a fuzzy lower-bound estimate of the cost remaining;)aa(a 111   ,

and finally he/she will add new paths, and sort the paths by the sum of the already

traveled path length = d, and a fuzzy lower-bound estimate of the remaining

www.manaraa.com

118

 distance = ufr to choose the shortest path.

Consider the following net, as shown in Figure (4.10). The traveler is at the

node S, and intends to go to the node G. All possible routes are shown in the net

graph, the number against each edge gives the actual distance of that route (node

to node) in some unit. The traveler has no knowledge about the distance

information, but the traveler records the distance he completed.

Figure 4.11 shows the fuzzy estimates of distances remaining (ufr) from

each city to the goal; Figure 4.13 shows how fuzzy underestimates of distances

remaining helps to make the search more efficient, where A* search augmented

by fuzzy underestimates determines that the path S-A-B-C-G is optimal. The

numbers beside the nodes are underestimate of total path length (uft).

 (uft) = accumulated distances(d) + fuzzy lower-bound estimate of the cost remaining

(α1).

Fuzzy underestimates quickly push up the lengths associated with bad paths. In this

example, fewer nodes are expanded than would be expanded with A* search

operating with crisp underestimates.

32

31

22

65 10 57

48
18

32

S

A B C

D E G

Figure 4.10: net graph with actual distance of each route.

www.manaraa.com

119

Figure: 4.11 Example of fuzzy underestimates of distances remaining (ufr) between each

city and the goal.

Part of the tree, which must be explored by the proposed algorithm , will be

as shown in Figure (4.12):-

The problem can be solved by applying the proposed algorithm of section 4.2 as

in the following example; Figure 4.13:-

Figure 4.13: Example for A* Search augmented by fuzzy underestimates.

S

A B C

D E G

ufr = 83

ufr = 75

ufr = 131 ufr = 91

ufr = 61

ufr = 22

120

Figure 4.12: The explored Part of the tree. At each node there is, specific source for estimated

information =IS, who (which) will give fuzzy cost underestimate of remaining distance = “approx.

a" = a, decision maker will choose an appropriate α, TFN model, and lower α-cut for that node.

IS = G citizen, ufr =22, α = 0.9,
TFN(19, 22, 30), α1 = 21.7,

uft =d(98)+ α1(21.7) = 119.7

IS = Taxi driver, ufr =60, α = 0.7,

TFN(57, 60, 68), α1 =59.1,
uft =d(66)+ α1(59.1) = 125.1

131

IS = Old man, ufr =83, α = 0.5,

TFN(80, 83, 91), α1 = 81.5
uft =d(48)+ α1(81.5) = 129.5

IS= Official sign, ufr =131, α = 0.95,

TFN(128, 131, 139), α1=130.85

uft =d(57)+ α1(130.85) =187.85

IS = Taxi driver using path daily,
 ufr=131, α = 0.9,

TFN (128, 131, 139), α1 = 130.7,

 uft =d(80)+ α1(130.7) = 201.7

IS = D citizen, ufr =90, α = 0.8,
TFN(87, 90, 98), α1 = 89.4,

uft =d(97)+ α1(89.4) = 186.4

S

A

B

C

D

E

G

G

D

www.manaraa.com

121

IS = Old man, ufr =83, α = 0.5,

TFN(80, 83, 91), α1 = 81.5
uft =d(48)+ α1(81.5) = 129.5

IS= Official sign, ufr =131, α=1.95,

TFN(128, 131, 139), α1=130.85

uft =d(57)+ α1(130.85) =187.85

S

A D

1- In the first step, as before, D and A are generated from S, at node A if the information source

(IS) was an old man, who gives a fuzzy estimate of remaining distance as a = "approx. 83",

decision maker can choose TFN as (81, 83, 91), and α=1.5 to produce α1=81.5 which will be add to

the distance already traveled d = 48, to produce the fuzzy underestimate of total path length uft

=129.5.

While node D information source about remaining distance (IS) was an Official sign with a =

"approx. 131", decision maker can choose TFN as (128, 131, 139), and α = 1.95 to produce

α1=131.85 which will be add to the distance already traveled d =57, to produce the fuzzy

underestimate of total path length uft = 187.85.

A is the node from which to search, as A’s fuzzy underestimated path length is 129.5,

which is shorter than that for D, 187.85.

187.85

 2- Expanding A leads to partial paths S-A-B, with a fuzzy underestimated path length of 125.1,

and to partial path S-A-D, with a fuzzy underestimated path length of 201.7, partial path S-A-D

can be deleted as its partial-path distance of 201.7 is more than that of. S-D (187.85) according to

the dynamic programming procedure.

S

A
D

IS = Taxi driver using path daily,
ufr=131, α = 0.9, TFN (128, 131, 139)

, α1 = 130.7, uft =d(80)+ α1(130.7) = 201.7

IS = Taxi driver, ufr =60, α = 0.7,
TFN(57, 60, 68), α1 =59.1,

uft =d(66)+ α1(59.1) = 125.1

B D

X

3- Now S-A-B is the partial path to extend, as it is the partial path with the minimum fuzzy

underestimated path length. This expansion leads to partial paths S-A-B-C, with a fuzzy

underestimated path length of 119.7, partial path S-A-B-E, with a fuzzy underestimated path

length of 186.4, and to the shortest complete path, S-A-B-G, with a total distance of 131, but to be

absolutely sure, all partial paths with partial path distances less than 131 must be expanded. There

is no need to extend the partial path S-A-B-E, as its partial-path distance of 186.4 is more than that

of the complete path.

S

A
D

D B

C E G

IS = D citizen, ufr =90, α = 0.8,

TFN(87, 90, 98), α1 = 89.4,

uft =d(97)+ α1(89.4) = 186.4

IS = G citizen, ufr =22, α = 0.9,

 TFN(19, 22, 30), α1 = 21.7,

uft =d(98)+ α1(21.7) = 119.7

131

187.85

201.7

X

www.manaraa.com

121

Figure 4.14 will explain the algorithm of A* search augmented by fuzzy

underestimate, according to the previous example:

4- Finally S-A-B-C is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to a complete path, S-A-B-C-G, with a total

distance of 121. No partial path has a lower-bound distance so low, so no further search is required.

S

A
D

D B

G 121
186.4

C E 131 G

187.85

201.7

X

X

X

X

121

IS = G citizen, ufr =22, α = 0.9,

TFN(19, 22, 30), α1 = 21.7,

uft =d(98)+ α1(21.7) = 119.7

IS = Taxi driver, ufr =60, α = 0.7,

TFN(57, 60, 68), α1 =59.1,
uft =d(66)+ α1(59.1) = 125.1

131

IS = Old man, ufr =83, α = 0.5,

TFN(80, 83, 91), α1 = 81.5

uft =d(48)+ α1(81.5) = 129.5

IS= Official sign, ufr =131, α = 0.95,

TFN(128, 131, 139), α1=130.85

uft =d(57)+ α1(130.85) =187.85

IS = Taxi driver using path daily,

 ufr=131, α = 0.9,

TFN (128, 131, 139), α1 = 130.7,
 uft =d(80)+ α1(130.7) = 201.7

IS = D citizen, ufr =90, α = 0.8,

TFN(87, 90, 98), α1 = 89.4,

uft =d(97)+ α1(89.4) = 186.4

S

A

B

C

D

E

G

G

D

www.manaraa.com

122

Figure 4.14: A* Search augmented by fuzzy underestimate/ algorithm explanation.

4.4.2 Roads between Two Jordanian Cities Application

In the following example, we will adopt a real life example; i.e. real roads

between two major Jordanian cities; from Al Karak to Irbid according to an actual

map for Jordan, as shown in Figure (4.15), where one can plan a route from Al

Karak as start node (S) to Irbid as goal node (G) in the following map.

Suppose that Mr. X is trying to find some path from Al Karak to Irbid using

a highway map such as the one shown in Figure (4.15). The starting point in Al

Karak denoted as Kr, which might be called (start node), and ending point in

Irbid denoted as Ir, which might be called (goal node).

The traveler is at Al Karak, and intends to go to Irbid. All possible routes

are shown in the net graph; the number against each edge gives the actual

distance of that route (node to node) in kilometers. The traveler has no

knowledge about the distance information, but the traveler records the distance

he completed.

SS:0

3

2

0

1

Extend SS to D,A

Extend SA to B,D

 to

SAB
: 125.1

SD
: 187.85

SAD
: 201.7

SABC

: 119.7

SABG
: 131

SABE
: 186.4

SD
: 187.85

Terminate SAD,Extend SAB to C,E,G

Extend SABC to G

!

SA
: 129.5

SD
: 187.85

4
SABCG

: 120

SABG
: 131

SABE
: 186.4

SD
: 187.85

SUCCES

S!

www.manaraa.com

123

34

36

16

13

1 Rm

Sw

Db Zm

Qt

Ir

Mq

Zg

Jr

St

Am

Md

Kr

Tf

22

16

76

15

28

27

31

57

36

Jd

31

34

58

60

28

34

33

Figure 4.15: net

graph from

Karak to Irbid

with actual

distance of each

route.

www.manaraa.com

124

Figure (4.16) shows the fuzzy estimates of remaining distances from each

city to Irbid (the goal) , where the number against each edge gives the estimated

distances in kilometers = (efr).

With looping paths eliminated, one can arrange all possible paths from the

start node S in a search tree. Figure (4.17) shows a search tree that consists of

nodes denoting all possible paths that lead outward from the start node Al Karak

(S) of the net shown in Figure (4.15) , the number against each edge gives the

actual distance of that route (node to node) in kilometers.

135
173

141

170

80
60

70 15

Am Sw Zm
Kr

Db

Qt

St Rm

Ir

Figure 4.16: fuzzy estimates of remaining distances from each city (or

intersection node) to Irbid =efr.

110 Md

40

Jr

Zg 110

www.manaraa.com

125

If a decision–maker takes a fixed TFN model slope as (a-3 , a , a+8), at

each node he/she will take fuzzy estimate of remaining distance for new paths

= efr = “approx. a" from different information sources = IS, choose α according

to degree of searcher confidence in estimation, take a fuzzy lower-bound

estimate of the cost remaining;)aa(a 111   , and finally he/she will add

new paths, and sort the paths by the sum of the already traveled path length =

d and the fuzzy lower-bound estimate of the remaining distance = ufr to

choose the shortest path.

Figure 4.17: A search tree that consists of nodes denoting all possible paths that lead outward from

the start node Al Karak (S) of the net shown in figure (4.15).

28

Md

Zg

Am

Sw

I2

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

31

Zm

Zg

Am

Sw

I2

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

57

I4

28 31

Qt

Zg

Am

Sw

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

Zg

Am

Sw

I2

Mq

Rm

Ir

Jr

Rm

Ir

St

Ir

34

22

36

16

13

27 15

76 28

16

Db

Md

31

31

Zm
28 57

36

Kr

34 34

www.manaraa.com

126

Figure (4.18) shows how fuzzy underestimates of distances remaining helps

to make the search more efficient, where A* search augmented by fuzzy

underestimates determines that the path Kr- I4- Md- Am- Sw- Jr- Rm- Ir is optimal.

The numbers beside the nodes are underestimate of total path length (uft) =

accumulated distances(d) + fuzzy lower-bound estimate of the cost remaining

(α1).

 Fuzzy underestimates quickly push up the lengths associated with bad

paths. In this example, fewer nodes are expanded than would be expanded with

A* search operating with crisp underestimates.

Part of the tree, which must be explored by the proposed algorithm will be as

shown in figure (4.18):-

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,
TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Figure 4.18: The explored part of the tree.At each node there is, specific source for estimated

information =IS, who (which) will give fuzzy cost estimate of remaining distance = “approx. a" = a,

decision maker will choose an appropriate α, TFN model, & lower α-cut for that node.

Md

Am

Sw

I2

Jr

Rm

Ir

St

13

27

15

28

16

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,
TFN(132, 135, 143), α1 =134.84,

uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25
uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,
TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,
TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,
uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,

TFN(37, 40, 48), α1 =39.1,

uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,
TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,
α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

180

www.manaraa.com

127

The problem can be solved by applying the proposed algorithm of section 4.2 as
in the following example:-
Figure 4.19: Example for A* Search augmented by fuzzy underestimates

Db Qt

Kr

34 34

IS = Bus Driver, efr =170, α = 0.75,
TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,
TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

1- In the first step, as before, Db and Qt are generated from Kr(S), at node Db if the information

source (IS) was a Farmer, who gives a fuzzy estimate of remaining distance as a = "approx. 140",

decision maker can choose TFN as (137, 140, 148),and α=0.4 to produce α1=138.2 which will be

added to the distance already traveled d = 34, to produce the fuzzy underestimate of total path

length uft =193.85.

While at node Qt information source about remaining distance (IS) was a Bus Driver with a =

"approx. 170", decision maker can choose TFN as (167, 170, 178), and α = 0.75 to produce

α1=169.25 which will be add to the distance already traveled d =34, to produce the fuzzy

underestimate of total path length uft =206.25.

Db is the node from which to search, as Db ’s fuzzy underestimated path length is 193.85, which is

shorter than that for Qt, 206.25.

Md Zm

Db

28 31

Qt

Kr

34

206.25

IS = Official sign, efr =135, α = 0.95,
TFN(132, 135, 143), α1 =134.84,

uft =d(62)+ α1(134.84) = 196.84

IS = taxi Driver, efr =110, α = 0.7,
TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

 2- Expanding Db leads to partial paths Kr- Db - Md, with a fuzzy underestimated path length of

174.1, and to partial path Kr- Db - Zm, with a fuzzy underestimated path length of 196.84

34

www.manaraa.com

128

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

31

Db

28 31

Kr

34 34

Zm

196.84

Qt

206.25

3- Now Kr- Db - Md is the partial path to extend, as it is the partial path with the minimum fuzzy

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am with a fuzzy

underestimated path length of 175.7.

IS = Engineer, efr =60, α = 0.8,
TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

Md

Am

Sw

I2

13

31

Zm

Db

28 31

Qt

Kr

34 34

196.84

206.25

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,
uft =d(118)+ α1(108.2) = 226.2

4- Now Kr- Db - Md- Am is the partial path to extend, as it is the partial path with the minimum

underestimated path length. This expansion leads to partial paths Kr- Db - Md- Am- Sw

, with a fuzzy underestimated path length of 168.4, and to partial Kr- Db - Md- Am- Zg, with a

fuzzy underestimated path length of 226.2.

Kr- Db - Md- Am- Sw is the partial path to extend, as it is the partial path with the minimum

underestimated path length.

www.manaraa.com

129

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

Sw

Jr St

13

27

15

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,
uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25
uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,
TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,
uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,
TFN(37, 40, 48), α1 =39.1,

uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,
TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

 5- Expanding Sw leads to partial paths Kr- Db- Md- Am- Sw- St, with a fuzzy underestimated

path length of 193.85, and to partial path Kr- Db - Md- Am- Sw-Jr, with a fuzzy underestimated

path length of 175.1

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,
uft =d(96)+ α1(79.7) = 175.7

Md

Ar

Sw

Jr

mR

St

13

27

15

28

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,
TFN(132, 135, 143), α1 =134.84,

uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25
uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,

TFN(107, 110, 118), α1 =109.1,
uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,

TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,

TFN(37, 40, 48), α1 =39.1,
uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,

TFN(67, 70, 78), α1 =69.85,
uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,

α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

6- Now Kr- Db - Md- Am- Sw- Jr is the partial path to extend, as it is the partial path with the

minimum underestimated path length. This expansion leads to partial path Kr- Db - Md- Am –Sw

-Jr- Rm, with a fuzzy underestimated path length of 178.7.

www.manaraa.com

131

Figure (4.20) will explain the algorithm of A* search augmented by fuzzy

underestimate, according to the previous example:

IS = Engineer, efr =60, α = 0.8,
TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

Sw

Jr

Rm

Ir

St

13

27

15

28

16

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,
uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,

TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,
TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,

TFN(37, 40, 48), α1 =39.1,
uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,

TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,

α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

180

7- Now Kr- Db - Md- Am- Sw- Jr- Rm is the partial path to extend, as it is the partial path with the

minimum underestimated path length. This expansion leads to a complete path, Kr- Db - Md- Am-

Sw- Jr- Rm- Ir, with a total distance of 180. No partial path has a lower-bound distance so low, so

no further search is required.

www.manaraa.com

131

IS = Engineer, efr =60, α = 0.8,

TFN(57, 60, 68), α1 =59.4,

uft =d(109)+ α1(59.4) = 168.4

IS = Police Man, efr =80, α = 0.9,

TFN(77, 80, 88), α1 =79.7,

uft =d(96)+ α1(79.7) = 175.7

Md

Am

Sw

I2

Jr

Rm

Ir

St

13

27

15

28

16

31

Zm

Db

28 31

Qt

Kr

34 34

IS = Official sign, efr =135, α = 0.95,

TFN(132, 135, 143), α1 =134.84,
uft =d(62)+ α1(134.84) = 196.84

IS = Bus Driver, efr =170, α = 0.75,

TFN(167, 170, 178), α1 = 169.25

uft =d(34)+ α1(169.25) = 206.25

IS=Farmer, efr =140, α = 0.4,

TFN(1137, 140, 148), α1=138.2

uft =d(34)+ α1(138.2) =193.85

IS = taxi Driver, efr =110, α = 0.7,

TFN(107, 110, 118), α1 =109.1,

uft =d(65)+ α1(109.1) = 174.1

Zg

22

IS = Old Man, efr =110, α = 0.4,
TFN(107, 110, 118), α1 =108.2,

uft =d(118)+ α1(108.2) = 226.2

IS = Taxi driver, efr =40, α = 0.7,
TFN(37, 40, 48), α1 =39.1,

uft =d(136)+ α1(39.1) = 175.1

IS = Official Sign, efr =70, α = 0.95,

TFN(67, 70, 78), α1 =69.85,

uft =d(124)+ α1(69.85) = 193.85

IS = Taxi driver using path daily, efr =15,

α = 0.9, TFN(12, 15, 23), α1 =14.7,

uft =d(164)+ α1(14.7) = 178.7

180

Kr
:0

4

3

2

0

6

5

1

7

Extend Kr to Db, Qt

Extend KrDb to Md, Zm

Extend KrDbMdAmSw
to St,Jr

Extend KrDbMd

 to Am

Extend KrDbMdAm

to Sw,Zg.

KrQt:
206.25

KrDbZm

:196.84

KrDbMd

:174.1

KrQt:
206.25

KrDbZm

:196.84

KrDbMdAm

:175.7

KrQt:
206.25

KrDb:
193.85

KrDbZm

:196.84

KrDbMdAmZg

:226.2

KrDbMdAmSw

:168.4

KrQt

:206.25

KrDbMdAmSwSt

: 193.85

KrDbMdAmSwJr

:175.1

KrQt

:206.25

KrDbZm

:196.84

KrDbMdAmZg

:226.2

Extend
KrDbMdAmSwJr

to Rm

KrDbMdAmSwSt

: 193.85

KrDbMdAmSwJrRm

:178.7

Extend
KrDbMdAmSwJrRm

to Ir

KrDbMdAmSwSt

: 193.85
KrDbMdAmSwJrRmIr

:180
SUCCESS

KrQt

:206.25

KrDbZm

:196.84

KrDbMdAmZg

:226.2

KrQt

:206.25

KrDbZm

:196.84
KrDbMdAmZg

:226.2

Figure 4.20: A* Search augmented by fuzzy underestimate/ algorithm explanation.

www.manaraa.com

132

4.5 Conclusion

In this chapter a new type of A* searching technique using fuzzy

underestimates is proposed.

Branch and Bound with dynamic programming is suitable when many paths

converge on the same place.

The A* procedure is suitable when both branch-and bound search with a

guess and dynamic programming are good, where underestimates quickly push

up the lengths associated with bad paths and dynamic programming drop

redundant paths from the search queue. In figure (4.7), fewer nodes are

expanded (10 nodes) than which may be expanded with branch-and- bound with

dynamic programming search operating without underestimates.

As in the last chapter, when analyzing search methods, Effective Branching

Factor (b*) of each method is important to be examined to characterize the quality

of a heuristic, where a well - designed heuristic would have a value of b* close

to 1, by reducing the number of nodes that need to be examined in the search

tree.

When evaluating heuristic search strategies which are discussed in this

chapter in term of EBF (b*) according to the results shown in table (4.1) and the

corresponding chart shown in figure (4.21), we can note that:

 DP principle has a high value of Effective Branching Factor when it is used

without other algorithms, where b* = 1.81 in case of figure (4.3).

www.manaraa.com

133

 A* search technique achieves better efficiency than B&B with dynamic

programming search technique, where b* was decreased from 1.81 to 1.4

because underestimation increases the efficiency of Branch and Bound

with dynamic programming by enabling it to be more informed.

 Using Fuzzy underestimate with A* search technique achieves better

efficiency than using crisp underestimate, where b* was decreased from

1.4 to 1.35 (in example of figure 4.13), and to 1.135 (in example of figure

4.19) because fuzzy underestimation increases the efficiency of A* by

enabling it to be more informed.

 A* with Fuzzy Underestimate search technique achieves better efficiency

than Branch and Bound Augmented by Fuzzy Underestimate search

technique, because dynamic programming principle will drop redundant

paths.

 Using Fuzzy Underestimate with A* search technique as shown in case of

figures (4.13) and (4.19) may not decrease b* much as using Fuzzy

underestimate with B B search technique as shown in the case of figures

(3.16) and (3.21), because A* search technique already achieves higher

efficiency than B&B search technique.

 In general adding Fuzzy underestimates can achieve better efficiency than

adding crisp underestimates, where Effective Branching Factor for Fuzzy

Underestimated A* is always better (less) than that for crisp algorithms

especially when the number of nodes is high. Obviously the closer the

Fuzzy underestimate is to the true remaining solution cost the more

efficient the A* search will be.

www.manaraa.com

134

 Fuzzy Underestimated A* search technique is complete (guaranteed to

find a solution), optimal (solution is guaranteed to be the best solution),

nonredundant, and more informed than other algorithms, and have higher

memory requirements (space complexity) comparable to other search

techniques because it maintains all the generated nodes in the memory.

Figure No. d N b* Type of Search

4.3 3 11 1.81 B&B with Dynamic Programming

4.7 4 10 1.403 A*

4.13 4 9 1.352 A* with fuzzy Underestimation
(Application 1)

4.19 7 12 1.135 A* with fuzzy Underestimation
(Application 2)

Table 4.1: Evaluation of Heuristic A* search strategies in terms of effective branching

factor (b*).
 d: is the depth of the solution,
 N: is the total number of nodes generated by each strategy for a particular problem.

 A well - designed heuristic would have a value of b* close to 1.

Figure 4.21: Evaluation of Heuristic A* search strategies in terms of effective branching

factor (b*) according to the results shown in table (4.1)

1.81

1.403 1.352

1.135

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B&B with Dynamic Programming A*

A* wih Fuzzy Underestimation (Application 1) A* wih Fuzzy Underestimation (Application 2)

www.manaraa.com

135

5.1 Introduction
In order to evaluate the performance of the proposed algorithms we will

introduce a visual interface program called Searching Performance Analyzer

(SPA), the source code for this program is shown in appendix (2).

In this chapter six Searching techniques are to be analyzed using the

simulation program (SPA) to compute the Number of Iterations, Time Complexity,

Space Complexity, and Effective Branching Factor for each algorithm.

This analysis process is to be carried out using six searching techniques,

these techniques are Branch & Bound, Branch & Bound with Underestimation,

Branch & Bound with dynamic programming, A*, Branch & Bound with Fuzzy

Underestimation, and A* with Fuzzy Underestimation.

Appendix (1) presents the pseudocode for each algorithm. Section (5.2)

presents the simulated examples which goes through the simulation procedures

step by step.

5.2 Simulation
This section presents the simulation for the proposed Searching techniques

which are Branch & Bound with Fuzzy Underestimation, A* with Fuzzy

Underestimation, and other related Searching techniques (Branch & Bound,

Branch & Bound with Underestimation, Branch & Bound with dynamic

programming, and A*).

This simulation is programmed in Visual Basic Object Oriented

Programming (OOP) language.

www.manaraa.com

136

5.2.1 Simulator Description
Simulated search problems can be represented by a state space as a

directed graph whose nodes correspond to problem situations and arcs to

possible moves. The particular problem is defined by a start node and a

goal condition. The solution of the problem corresponds to a path on the

graph. Thus problem solving is reduced to searching for a path in a graph.

In order to explain the many techniques available, one can look at the

problem of route planning, in a particular route from a start node (S) to a goal

node (G) as was shown previously in Figure (2.9), or a highway map such as the

one shown in Figure (3.18) which represents the real life example between two

major Jordanian cities (from Al Karak to Irbid) according to an official map of

Jordan, where one can plan a route from Al Karak as a start node (S) to Irbid as

a goal node (G).

The graph data must be entered in special Nodes and Edges Screens,

where the nodes information to be entered are: Start, Goal, and other

Intermediate nodes, according to the net graph, then node’s cost information are

entered using the Edges Screen as: expansion edges for each node with the

corresponding cost (between each two nodes), straight line distance from each

node to goal (as the crisp underestimated value), and fuzzy estimated distance

from each node to goal with the corresponding Information Source type.

Then with looping paths eliminated, the program will display all possible

paths from the start node S in a search tree that consists of nodes denoting all

the possible paths that lead outward from the start node S of the net.

www.manaraa.com

137

Finally the six search procedures will be executed by the program for that

specific net, and the results of those procedures execution will be recorded and

displayed (by Result Screen) in a table and four bar charts.

Simulation steps and procedures are presented in the following sections.

5.2.2 Examples
In this sub section all examples will be introduced by adopting real roads

between some major Jordanian cities; according to an official map of Jordan,

which is shown in Figure (5.1), one can plan a route from a start node (S) to a

goal node (G) using the map taken from (rjgc, April. 23, 2007).

Results of each example are presented using a table and four bar charts

representing (Number of Iterations, Time Complexity, Space Complexity, and

Effective Branching Factor) for the six algorithms.

The simulation program gives us the opportunity of choosing number of

nodes to be used (6-20 nodes).

All examples will use two main screens to enter node’s information and

node’s cost information. The net will be converted automatically into a search tree

by tracing out all possible paths until searcher cannot extend any of them without

creating a loop.

Each type of algorithm has two execution methods (Manual or Automatic)

which can be chosen from the tree screen as shown in figure (5.8). When

choosing Automatic run (A), all algorithms (techniques) will be displayed

automatically and the results will be given directly in the result screen.

www.manaraa.com

138

Manual run (M) can be chosen in cases where we would like to see detailed

description of each step during the execution of a specific algorithm.

By choosing Manual run (M) for one of the six algorithms, the type of search

which has been chosen will be executed in steps to show the procedures of the

chosen algorithm, while simultaneously the other algorithms (techniques) will be

executed automatically and the comparison results for all six algorithms will be

displayed in the result screen after completion of the manual run.

www.manaraa.com

139

Figure 5.1: Jordan Map.

www.manaraa.com

141

Example one:

In the following example, we will consider the net shown in figure (5.2) The

traveler is at node S, and intends to go to node G. All possible routes are shown

in the net graph; the numbers shown represent the actual distance of each route

(node to node) in some unit. The traveler has no knowledge about the distance

information, but the traveler records the distance he completed.

To solve this net graph problem, we can use the simulation program (SPA)

as shown in the following steps.

Step 1-

When the program starts, a splash screen will appear as shown in figure

(5.3).

21

25

22

28 27 42

44
13

29

S

A B C

D E G

Figure 5.2: net graph with actual distance of each route.

www.manaraa.com

141

Figure 5.3: Splash Screen.

After completing the necessary operations the Nodes Screen will be

displayed as shown in figure (5.4).

www.manaraa.com

142

Figure 5.4 Nodes Screen without Nodes Information.

In the Nodes Screen the user must assign (Nodes Information) these are;

number of nodes (from 6 to 20 nodes), start node, goal node, and intermediate

nodes according to the required net graph, or he/she can use one of the available

samples (sample 1 - sample 15).

In this example we will choose (Sample 1) to deal with the graph given in

figure (5.2).

Step 2-

On choosing (Sample 1), the empty fields (Nodes Information) will be filled

by the program according to (Sample 1) pre-entered data as shown in figure (5.5).

Figure 5.5: Nodes Screen after choosing (Sample 1).

www.manaraa.com

143

Note that fields 1 to 7 have been filled with letters which represent (Sample

1) net graph nodes.

At the bottom of (Nodes Screen) four commands are available which can

be used to display the following:

Edges: to display the next screen (Edges Screen), as shown in

figure (5.7).

Help: to display the Help file (Read me) file.

 About: to display (About Screen), which gives a brief description about
the program.

Exit: to end the program.

Step 3-

After choosing Edges command, the next screen (Edges Screen) will

appear as shown in figure (5.6).

www.manaraa.com

144

Figure 5.6: Edges Screen without node’s cost information.

In the (Edges Screen), the user must assign node’s cost information in the

empty fields which are:

1- (To Node) field : expansion edges for each node

2- (Edge Cost) field: cost of the corresponding edge., , and with the

corresponding Information Source type.

3- (e. to Goal-S.L.) field: Straight Line distance from each node to goal as

the crisp underestimated value.

4- (e. to Goal-est.) field: fuzzy estimated distance from each node to goal.

5- (Information Source) field: choose one of ten choices which are pre-

determined as:

“Map” which corresponds to α = 0.95, “Official Sign” which corresponds to α =

0.95,

“Police Man” who corresponds to α = 0.95, “G Citizen” who corresponds to α =

0.90,

“Person Using The Path Daily” who corresponds to α = 0.90, “Taxi Driver using

The Path Daily” who corresponds to α = 0.90, “Previous Expert” who corresponds

to α = 0.80, “Other City Citizen” who corresponds to α = 0.60, “Taxi Driver” who

corresponds to α = 0.70, and “Old Man” who corresponds to α = 0.50.

In our example the empty fields will be filled by the program according to

(Sample 1) pre-entered data as shown in figure (5.7).

www.manaraa.com

145

Figure 5.7: Edges Screen after choosing (Sample 1).

Note that at the bottom of (Edges Screen) three choices are available which

can be used as follows:

Nodes: to display the previous screen (Nodes Screen).

Tree: to display the next screen (Tree Screen).

Exit: to end the program.

In case of modification of data user can go back to (Nodes Screen) by

choosing (Nodes) command.

Step 4 -

To continue, choose (Tree) command, where the net will be converted

automatically into a search tree as shown in figure (5.8) by tracing out all possible

paths from the start node S of the net until program cannot extend any of them

without creating a loop.

www.manaraa.com

146

Note that the numbers illustrated on the tree have been explained as shown

in the associated text boxes.

Figure 5.8: Tree Screen after choosing (Sample 1).

To the top left corner of the screen you will find names of the six algorithms

which will be executed and type of execution for each technique, Manual or

Automatic, where type of algorithm and execution method must be chosen.

On choosing Automatic run (A), all algorithms (techniques) will be executed

automatically and the results will be given directly in the result screen.

When choosing Manual run (M) for any of the six algorithms, the type of

search which has been chosen will be executed step by step to show the

algorithm procedures, while all other algorithms (techniques) will be carried out

simultaneously. The comparison results will be given in the result screen after the

α

d(already traveled)

u(total path length)= d(already traveled)

+u(distance remaining)

uft = d (already traveled) + α1

Edge cost

Ur (S.L. estimation to goal)

efr (fuzzy estimation to goal)

www.manaraa.com

147

completion of the manual run steps.

In this example (Sample 1) we will choose the Manual (M) run of “Branch &

Bound Search with dynamic programming”.

Figures (5.9 – 5.20) show the effect of using “Branch & Bound Search with

dynamic programming”, on the map-traversal problem (Sample 1), where the red

colored numbers beside the nodes denote the length of each path (cost) = d

(already traveled), red colored nodes denote explored nodes, blue colored lines

denote paths of reached nodes, dark red colored X denotes canceled nodes, and

green colored lines denote the final path.

A short message will appear on each screen to inform users which node to

be considered or to be canceled next. All paths are cut off quickly, leaving only

the optimal path, S-D-E-F-G.

www.manaraa.com

148

Figure 5.9: Tree Screen using Branch & Bound Search with dynamic programming, on the
map-traversal problem (Sample 1). 1-In the first step, the red colored nodes (A and D) and
the associated red colored numbers (42 and 44) denote the explored nodes and the length
of each path. The Short message informs users that node A is to be considered next.

Figure 5.10: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1). 2-Partial path S-A denoted by the blue colored
line is therefore selected for expansion . The Short message informs users that node D
is to be cancelled next.

www.manaraa.com

149

Figure 5.11: Tree Screen using Branch & Bound Search with dynamic programming , on the
map-traversal problem (Sample 1), 3- Next, S-A-B and S-A-D are generated from S-A with partial
path distances of 55 and 63, partial path S-A-D will be deleted because its partial-path distance

of 63 is more than that of S-D (44). The dark red colored X denotes canceled node. The Short

message informs users that node D is to be considered next.

www.manaraa.com

151

Figure 5.12: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 4- Now S-D, with a partial path distance of 44, is
expanded, leading to partial paths S-D-A and S-D-E. The Short message informs users
that node A is to be cancelled next.

www.manaraa.com

151

Figure 5.13: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 5- At this point, partial path S-D-A can be deleted
because its partial-path distance of 65 is more than that of S-A-B (55). The Short message
informs users that node B is to be considered next.

www.manaraa.com

152

Figure 5.14: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 6-Then expanding S-A-B , leads to S-A-B-C and S-
A-B-G with partial path distances of 84, and 83. The Short message informs users that
node E is to be considered next.

www.manaraa.com

153

Figure 5.15: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 7- Then expanding S-D-E , leads to S-D-E-B with
partial path distance of 96. The Short message informs users that node B is to be cancelled
next.

www.manaraa.com

154

Figure 5.16: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 8- Now S-D-E-B can be deleted because its partial-
path distance of 96 is more than that S-A-B (55).The Short message informs users that
node G is to be considered next.

www.manaraa.com

155

Figure 5.17: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 9- Now the complete path S-A-B-G is generated
from S-A-B. The Short message informs users that node C is to be cancelled next.

www.manaraa.com

156

Figure 5.18: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1), 10-Then partial path S-A-B -C can be deleted
because its partial-path distance of 84 is more than that of the shortest complete path S-
A-B-G (83). The Short message informs users that the final path S-A-B-G is to be
considered next.

www.manaraa.com

157

Figure 5.19: Tree Screen using Branch & Bound Search with dynamic programming , on
the map-traversal problem (Sample 1),), 11- Finally S-A-B-G is the final shortest complete
path because there are no other partial paths to be expanded, where the green colored line
denotes the final path.

At the top right corner of the screen you can find three commands

On choosing (Results) command, the next screen (Results Screen) will

display the results as shown in figure (5.20).

www.manaraa.com

158

Figure 5.20: Results Screen using Branch & Bound Search with dynamic programming ,
on the map-traversal problem (Sample 1).

On completion of the manual run steps the six searching techniques will run

automatically and the comparison results will be given in the result screen, where

the six searching techniques will be analyzed by computing the Number of

Iterations, Time Complexity (ms), Space Complexity (B), and Effective Branching

Factor for each algorithm.

Results of these procedures will be displayed in a table and four bar charts

as shown in figure (5.20).

www.manaraa.com

159

Example Two:

In the following example, we will consider the following highway map as

shown in figure (5.21) which represents the real life roads between two major

Jordanian cities from Ras an Nakab (Nq) to Amman (Am) according to the

official map of Jordan which is shown in figure (5.1), where one can plan a route

from Ras an Nakab as start node (S) to Amman as goal node (G)

All possible routes are shown in the graph; the number against each edge

gives the actual distance of that route (node to node) in some unit. The traveler

has no knowledge about the distance information, but the traveler records the

distance he completed.

When the program starts, a splash screen will appear temporarily, then

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4).

In this example (Sample 2: Jordanian Cities - From Ras Nakab to Amman)

represented by the net graph of figure (5.21) has been chosen.

www.manaraa.com

161

On choosing (Sample 2), data of net graph of Figure (5.21) will be loaded

into the program, then all necessary steps were followed using the setup screens

to activate the example.

The results graph of this run are as given in Figure 5.22.

13

Az

Db Zm

Qt

Zg

Am

Md

Kr

Tf

Pt

Jf

Mn

Nq

22

67

31

57

36

Jd

31

34

58

63

42

100

47

187

60

99

28

34

33

34

38

31

31

54

60

53

55

89

93 83

90

130

150

142

150

199

210

84

95

Figure 5.21: net graph from Ras an Nakab (Nq) to

Amman (Am) with actual distance of each route.

www.manaraa.com

161

Figure 5.22: Results Screen using Branch & Bound Search with Fuzzy underestimation,
on the map-traversal problem (Sample 2).

Example Three:

In the following example, we will consider the following highway map as

shown in figure (5.23) which represents the real roads between two major

Jordanian cities from Tafila (Tf) to Azraq (Az) according to the official map of

Jordan which is shown in figure (5.1), where one can plan a route from Tafila as

start node (S) to Azraq as goal node (G)

All possible routes are shown in the graph; the number against each edge

gives the actual distance of that route (node to node) in some unit. The traveler

has no knowledge about the distance information, but the traveler records the

www.manaraa.com

162

 distance he completed.

When the program starts, a splash screen will appear temporarily then

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4).

In this example (Sample 5: Jordanian Cities - From Tafila to Azraq)

represented by the net graph of figure (5.23) has been chosen.

On choosing (Sample 5), data of net graph of figure (5.23) will be loaded

into the program, then all necessary steps were followed using the setup screens

to activate the example.

Az

Db Zm

Qt

Am

Kr

Tf

Jf

Mn

57

36

Jd

62

34

58

63

47

187

60

99

28

34

33

107

158

104

150

130

190

106

190

164

250

157

250

212

230

84

95

Figure 5.23: net graph from Tafila (Tf) to Azraq

 (Az) with actual distance of each route.

94

85

184

186

www.manaraa.com

163

The results graph of this run are as given bellow (figure 5.24):

Figure 5.24: Results Screen using A* Search with Fuzzy underestimation, on the map-
traversal problem (Sample 5).

Example Four:

In the following example, we will consider the following highway map as

shown in figure (5.25) which represents the real roads between two major

Jordanian cities from Ras an Nakab (Rn) to Azraq (Az) according to the official

map of Jordan which is shown in figure (5.1), where one can plan a route from

Ras an Nakab as start node (S) to Azraq as goal node (G)

www.manaraa.com

164

All possible routes are shown in the graph; the number against each edge

gives the actual distance of that route (node to node) in some unit. The traveler

has no knowledge about the distance information, but the traveler records the

distance he completed.

When the program starts, a splash screen will appear temporarily then

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4).

In this example (Sample 5: Jordanian Cities - From Ras Nakab to Azraq)

represented by the net graph of figure (5.25) has been chosen.

Az

Db Zm

Qt

Am

Kr

Tf

Jf

Mn

57

36

Jd

62

34

58

63

47

187

60

99

28

34

33

107

158

104

150

130

190

106

190

164

250
157

250

212

230

84

95

Figure 5.25: net graph from Ras an Nakab (Nq) to

Azrak(Az) with actual distance of each route.

94

85

184

186

www.manaraa.com

165

On choosing (Sample 3), data of net graph of figure (5.25) will be loaded

into the program, then all necessary steps were followed using the setup screens

to activate the example.

The results graph of this run are as given bellow (figure 5.26):

Figure 5.26: Results Screen using Branch and Bound Search with Fuzzy

underestimation, on the map-traversal problem (Sample 3).

Example Five:

In the following example, we will consider the following highway map as

shown in figure (5.27) which represents the real roads between two major

Jordanian cities from Qatrana (Qt) to Irbid (Ir) according to the official map of

Jordan which is shown in figure (5.1), where one can plan a route from Qatrana

www.manaraa.com

166

 as start node (S) to Irbid as goal node (G)

All possible routes are shown in the graph; the number against each edge

gives the actual distance of that route (node to node) in some unit. The traveler

has no knowledge about the distance information, but the traveler records the

distance he completed.

When the program starts, a splash screen will appear temporarily then

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4).

In this example (Sample 4: Jordanian Cities - From Qatrana to Irbid)

represented by the net graph of figure (5.27) has been chosen.

34

86

36

13

1

Db Zm

Qt

Ir

Zg

Jr

Am

Kr

22

44

40

57

36

62

34

28

34 Figure 5.27: net graph from

Qatrana (Qt) to Irbid (Ir)

with actual distance of each route.

www.manaraa.com

167

On choosing (Sample 4), data of net graph of figure (5.27) will be loaded

into the program, then all necessary steps were followed using the setup screens

to activate the example.

The results graph of this run are as given bellow (figure 5.28):

Figure 5.28: Results Screen using A* Search, on the map-traversal problem (Sample 4).

Example Six:

In the following example, we will consider the following highway map as

shown in figure (5.29) which represents the real roads between two major

Jordanian cities from Karak (Kr) to Azraq (Az) according to the official map of

Jordan which is shown in figure (5.1), where one can plan a route from Karak as

www.manaraa.com

168

 start node (S) to Azraq as goal node (G)

All possible routes are shown in the graph; the number against each edge

gives the actual distance of that route (node to node) in some unit. The traveler

has no knowledge about the distance information, but the traveler records the

distance he completed.

When the program starts, a splash screen will appear temporarily then

(Nodes Screen) will be displayed as shown previously in figures (5.3) and (5.4).

In this example (Sample 15): Jordanian Cities - From Karak to Azraq)

represented by the net graph of figure (5.29) has been chosen.

On choosing (Sample 15), data of net graph of figure (5.29) will be loaded

into the program, then all necessary steps were followed using the setup screens

to activate the example.

The results graph of this run are as given bellow (figure 5.30):

Az

Db Zm

Qt

Am

Kr

57

36

62

34

99

28

34

107

158

104

150

106

190

84

95

Figure 5.29: net graph from Karak (Kr) to Azraq

 (Az) with actual distance of each route.

94

85

Zq
22

67

www.manaraa.com

169

Figure 5.30: Results Screen using Branch and Bound Search with Crisp Underestimation,
on the map-traversal problem (Sample 15).

www.manaraa.com

171

5.3. Simulation Survey:

The following tables and line charts show results when executing the

program for different examples; according to an official map of Jordan, which was

shown in Figure (5.1).

Six Searching techniques were analyzed by computing the Number of

Iterations, Time Complexity, Space Complexity, and Effective Branching Factor

for each algorithm.

The analysis process is carried out for six searching techniques, which are

Branch & Bound, Branch & Bound with Underestimation, Branch & Bound with

dynamic programming, A*, Branch & Bound with Fuzzy Underestimation, and A*

with Fuzzy Underestimation.

www.manaraa.com

171

 Number of Iterations: Table(5.1) shows Number of Iterations for six

Searching techniques when the simulation was run for different examples.

Table 5.1: Comparison of Number of Iterations for various search techniques, where B&B denotes
Branch & Bound, DB&B denotes Branch & Bound with dynamic programming, UB&B denotes
Branch & Bound with Underestimation, FB&B denotes Branch & Bound with Fuzzy
Underestimation, A* denotes A*, and FA* denotes A* with Fuzzy Underestimation.

Number of Iterations

Example
Name of search technique

B&B DB&B UB&B FB&B A* FA*

S-G 8 5 3 3 3 3

Nq-Am 24 11 8 8 8 8

Nq-AZ 24 11 7 3 7 3

Qt-Ir 17 7 4 4 4 4

Tf-Az 22 9 10 5 7 5

Ir-Am 6 6 5 4 5 4

Rm-Am 4 4 3 3 3 3

Mn-Am 13 9 5 5 5 5

Jf-Am 15 10 5 5 5 5

Jd-Am 10 6 3 3 3 3

Tf-Am 10 6 3 3 3 3

Zm-Ir 8 5 3 3 3 3

Db-Ir 8 5 3 3 3 3

Kr-Ir 16 7 5 4 5 4

kr-Az 145 6 6 3 5 3

Jr-Az 7 5 2 2 2 2

Jd-Az 8 6 4 4 4 4

Db-Az 7 6 2 2 2 2

Ir-Az 5 4 2 2 2 2

Az-Ir 5 3 2 2 2 2

Tf-Ir 29 8 7 5 7 5

Jf-Ir 15 8 3 3 3 3

Am-Ir 3 3 2 2 2 2

Kr-Am 6 5 3 3 3 3

Zm-Am 2 2 4 4 4 4

Qt-Am 5 4 2 2 2 2

Db-Am 3 3 2 2 2 2

Az-Zg 3 3 3 3 3 3

Md-Ir 8 6 3 3 3 3

www.manaraa.com

172

The following line chart shows comparison of Number of Iterations for various

search techniques according to different independent examples.

Figure 5.31 shows that Number of iterations for B&B increases as number of

expanded nodes has been increased.

Figure 5.31 (Line chart): Comparison of Number of Iterations for four crisp search techniques.

Number of Iterations

0

5

10

15

20

25

30

35

N
o

.
o

f
It

e
rr

a
ti

o
n

s

B&B

DB&B

UB&B

A*

Example

www.manaraa.com

173

 Time Complexity: Table(5.2) shows Time Complexity (ms)for six

Searching techniques when the simulation was run for different examples.

Table 5.2: Comparison of Time Complexity for various search techniques.

Search time (ms)

Example
Name of search technique

B&B DB&B UB&B FB&B A* FA*

S-G 117 58 42 42 44 34

Nq-Am 495 141 151 145 143 117

Nq-AZ 495 141 120 36 116 32

Qt-Ir 269 65 55 55 61 49

Tf-Az 363 99 169 74 86 62

Ir-Am 65 66 56 47 60 43

Rm-Am 35 35 28 28 30 26

Mn-Am 210 101 68 68 76 60

Jf-Am 196 114 70 70 78 62

Jd-Am 143 62 42 42 48 36

Tf-Am 141 59 42 42 48 36

Zm-Ir 91 45 36 36 40 42

Db-Ir 91 45 36 36 40 32

Kr-Ir 245 66 64 55 64 49

kr-Az 183 59 75 42 54 36

Jr-Az 82 52 25 25 29 21

Jd-Az 103 67 51 43 53 37

Db-Az 100 75 19 19 21 17

Ir-Az 62 46 25 25 27 21

Az-Ir 60 33 25 25 27 21

Tf-Ir 546 82 110 76 94 62

Jf-Ir 224 80 42 42 46 36

Am-Ir 26 27 19 19 21 17

Kr-Am 67 48 36 36 40 32

Zm-Am 17 17 25 25 25 25

Qt-Am 56 38 25 25 29 21

Db-Am 26 27 19 19 21 17

Az-Zg 18 20 18 18 18 18

Md-Ir 105 64 36 36 40 32

www.manaraa.com

174

The following line charts show comparisons of Time Complexity for various

search techniques according to different independent examples, where Time

complexity for all search techniques increases as number of expanded nodes has

been increased.

Figure 5.32 shows that UB&B and A* achieve less Time complexity than B&B search

technique.

Figure 5.33 shows that FB&B and FA* achieve less Time complexity than UB&B and

A* search techniques for all examples.

Figure 5.32 (Line chart): Comparison of Time Complexity for three crisp search techniques.

Figure 5.33 (Line chart): Comparison of Time Complexity for two crisp and two fuzzy search
techniques.

Time Complexity

0

100

200

300

400

500

600

T
im

e
 (

m
s
)

B&B

UB&B

A*

Example

www.manaraa.com

175

Figure 5.34 shows that FB&B achieves less Time complexity than UB&B search

technique, while figure 5.35 shows that FA* achieves less Time complexity than

A* search technique for all examples.

Figure 5.34 (Line chart): Comparison of Time Complexity for two search techniques.

Figure 5.35 (Line chart): Comparison of Time Complexity for two search techniques.

Time Complexity

0

20

40

60

80

100

120

140

160

T
im

e
 (

m
s
) UB&B

A*

FB&B

FA*

Time Complexity

0

20

40

60

80

100

120

140

160

T
im

e
 (

m
s
)

UB&B

FB&B

Example

Example

www.manaraa.com

176

Time Complexity

0

20

40

60

80

100

120

140

160

T
im

e
 (

m
s
)

A*

FA*

Example

www.manaraa.com

177

 Space Complexity: Table (5.3) shows Space Complexity (Byte) for six

Searching techniques when the simulation was run for different examples.

Table 5.3: Comparison of Space Complexity for various search techniques.

Search space(Byte)

Example
Name of search technique

B&B DB&B UB&B FB&B A* FA*

S-G 14 10 7 7 7 9

Nq-Am 33 21 17 16 17 20

Nq-AZ 33 21 14 16 14 8

Qt-Ir 24 11 8 8 8 11

Tf-Az 27 14 18 10 12 13

Ir-Am 9 9 8 7 8 9

Rm-Am 6 6 5 5 5 6

Mn-Am 21 16 10 10 10 14

Jf-Am 18 16 10 10 10 14

Jd-Am 17 11 7 7 7 10

Tf-Am 17 10 7 7 7 10

Zm-Ir 12 8 6 6 6 8

Db-Ir 12 8 6 6 6 8

Kr-Ir 23 11 9 8 9 11

kr-Az 18 10 11 7 9 10

Jr-Az 11 8 5 5 5 7

Jd-Az 13 10 8 7 8 8

Db-Az 13 12 4 4 4 5

Ir-Az 9 9 5 5 5 6

Az-Ir 9 6 5 5 5 6

Tf-Ir 36 13 13 10 13 13

Jf-Ir 21 12 7 7 7 9

Am-Ir 5 5 4 4 4 5

Kr-Am 10 8 6 6 6 8

Zm-Am 4 4 5 5 5 5

Qt-Am 9 7 5 5 5 7

Db-Am 5 5 4 4 4 5

Az-Zg 4 5 4 4 4 4

Md-Ir 13 10 6 6 6 8

www.manaraa.com

178

The following line charts show comparisons of Space Complexity for various

search techniques according to different independent examples, where Space

complexity for all search techniques increases as number of expanded nodes has

been increased.

Figure 5.36 shows that UB&B and A* achieve less Space complexity than B&B

search technique, and figure 5.37 shows that FB&B achieves less Space

complexity than UB&B search technique for all examples.

Figure 5.36 (Line chart): Comparison of Space Complexity for three crisp search techniques.

Figure 5.37 (Line chart): Comparison of Space Complexity for two search techniques.

Space Complexity

0

5

10

15

20

25

30

35

40

S
p

a
c
e
 (

B
)

B&B

UB&B

A*

Example

www.manaraa.com

179

Space Complexity

0

2

4

6

8

10

12

14

16

18

20

S
p

a
c
e
 (

B
)

UB&B

FB&B

Example

www.manaraa.com

181

Figure 5.38 shows that FA* achieves less Space complexity than A* search

technique, and figure 5.39 shows that FA* achieves less Space complexity than

FB&B search technique for all examples.

Figure 5.38 (Line chart): Comparison of Space Complexity for two search techniques.

Figure 5.39 (Line chart): Comparison of Space Complexity for the proposed two fuzzy search
techniques.

space Complexity

0

5

10

15

20

25

S
p

a
c
e
 (

B
)

A*

FA*

Space Complexity

0

5

10

15

20

25

T
im

e
 (

m
s
)

FB&B

FA*

Example

Example

www.manaraa.com

181

 Effective Branching Factor: Table (5.4) shows Effective Branching

Factor for six Searching techniques when the simulation was run for

different examples.

Table 5.4: Comparison of Effective Branching Factor for various search techniques.

Effective Branching Factor

Example
Name of search technique

B&B DB&B UB&B FB&B A* FA*

S-G 0.51 0.62 0.33 0.33 0.33 0.33

Nq-Am 0.69 0.47 0.4 0.37 0.4 0.37

Nq-AZ 0.69 0.47 0.32 0.21 0.32 0.21

Qt-Ir 0.55 0.37 0.2 0.2 0.2 0.2

Tf-Az 0.6 0.51 0.65 0.32 0.42 0.32

Ir-Am 0.26 0.26 0.2 0.13 0.2 0.13

Rm-Am 0.21 0.21 0.1 0.1 0.1 0.1

Mn-Am 0.49 0.35 0.32 0.32 0.32 0.32

Jf-Am 0.42 0.37 0.18 0.18 0.18 0.18

Jd-Am 0.62 0.37 0.33 0.33 0.33 0.33

Tf-Am 0.62 0.32 0.33 0.33 0.33 0.33

Zm-Ir 0.42 0.44 0.21 0.21 0.21 0.21

Db-Ir 0.42 0.44 0.21 0.21 0.21 0.21

Kr-Ir 0.53 0.37 0.26 0.2 0.26 0.2

kr-Az 0.42 0.32 0.69 0.32 0.53 0.33

Jr-Az 0.37 0.44 0.43 0.43 0.43 0.43

Jd-Az 0.29 0.32 0.44 0.33 0.44 0.33

Db-Az 0.47 0.42 0.15 0.15 0.15 0.15

Ir-Az 0.53 0.44 0.43 0.43 0.43 0.43

Az-Ir 0.53 0.21 0.43 0.43 0.43 0.43

Tf-Ir 0.73 0.29 0.29 0.18 0.29 0.18

Jf-Ir 0.49 0.42 0.33 0.33 0.33 0.33

Am-Ir 0.43 0.43 0.15 0.15 0.15 0.15

Kr-Am 0.62 0.44 0.21 0.21 0.21 0.21

Zm-Am 0.15 0.15 0.1 0.1 0.1 0.1

Qt-Am 0.53 0.33 0.43 0.43 0.43 0.43

Db-Am 0.43 0.43 0.15 0.15 0.15 0.15

Az-Zg 0.15 0.15 0.15 0.15 0.15 0.15

Md-Ir 0.47 0.62 0.21 0.21 0.21 0.21

www.manaraa.com

182

The following line charts show comparisons of Effective Branching Factor

for various search techniques according to different independent examples, where

EBF for B&B, UB&B, and A* search techniques increases as number of expanded

nodes has been increased. Figure 5.40 shows that UB&B and A* achieve less EBF

than B&B and DB&B search techniques, and figure 5.41 shows that FB&B achieves

less EBF than UB&B search technique for all examples.

Figure 5.40 (Line chart): Comparison of Effective Branching Factor for four crisp search echniques.

Figure 5.41 (Line chart): Comparison of Effective Branching Factor for two search techniques.

Effictive Branching Factor

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
.B

.F
.

B&B

DB&B

UB&B

A*

Effictive Branching Factor

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
.B

.F
.

UB&B

FB&B

Example

Example

www.manaraa.com

183

Figure 5.42 shows that FA* achieves less EBF than A* search technique for all

examples.

Figure 5.42 (Line chart): Comparison of Effective Branching Factor for two search techniques.

5.4 Conclusion.
This chapter introduced and described the practical aspect of this research,

where the presented simulation program form the core of the practical part to

evaluate this work. The simulation is considered enough to evaluate, and

compare the proposed algorithms with other well known algorithms.

This chapter introduced and described the simulation program which has

been used to evaluate the performance of the proposed algorithms with a number

of practical examples to show the execution steps and procedures according to

an official map of Jordan with actual distances.

Effictive Branching factor

1

1.1

1.2

1.3

1.4

1.5

1.6

E
.B

.F
.

A*

FA*

Example

www.manaraa.com

184

Simulation program has been explained for the proposed Searching

techniques which are Branch & Bound with Fuzzy Underestimation, and A* with

Fuzzy Underestimation, and other related Searching techniques which are: B&B,

B&B with Underestimation, B&B with dynamic programming, and A*.

The results of each comparison when executing the program for a specific

problem (example) will be shown in a table for Number of Iterations, Time

Complexity, Space Complexity, and Effective Branching Factor for each of the six

algorithms, and the results also will be shown in four bar charts each one of them

represents one of the four factors for the six searching techniques.

The analysis and simulation results show that Fuzzy A* and Fuzzy

Underestimate B&B search techniques achieve better efficiency, Time

Complexity, Number of Iteration, and Effective Branching Factor are better than

all other searching techniques, while.

Space Complexity for A* and Underestimated B &B are always more

(worse) than those of other algorithms, while Space complexity for Fuzzy A* and

Fuzzy Underestimated B&B are always less (better) than those of crisp A* and

Underestimated B&B.

Time complexity for Fuzzy A* is better (less) than that for Fuzzy

Underestimated B&B, while Space complexity for Fuzzy A* is worse (more) than

that for Fuzzy Underestimated B&B.

www.manaraa.com

185

6.1 Introduction
Well-designed heuristic functions can play an important part in efficiently

guiding a search process toward a solution. The purpose of a heuristic function

is to guide the search process in the most profitable direction by suggesting

which path to follow first when more than one is available: The more accurately

the heuristic function estimates the true merits of each node in the search tree

(or graph), the more direct the solution process. In the extreme, the heuristic

function would be so good that essentially no search would be required. The

system would move directly to a solution (Rich & Knight, 2000).

Branch and Bound search augmented by underestimate and A* searching

technique are effective heuristic principle guided Artificial Intelligence Problem-

Solving Techniques.

The existing Branch & Bound augmented by underestimate and A*

searching techniques are techniques that work well on precise data, but not on

imprecise data, whereas data available are not always crisp in real life.

The aim of this research is to deal with such data type and to deal with the

imprecise data involved in different kinds of existing searching techniques in a

more efficient way by applying fuzzy logic on Branch & Bound augmented by

underestimate and A* searching techniques, where fuzzy logic is an appropriate

tool to deal with uncertain and imprecise information, because fuzzy logic

has a capability to express knowledge in the form of linguistic rules.

www.manaraa.com

186

A search problem and its solution by the existing crisp method of branch and

bound and A* search has been considered in this dissertation. We have proved

that these methods can be improved by using fuzzy theory. Consequently a new

method of B&B and A* searching techniques with fuzzy underestimation to the

available fuzzy information (using Triangular Fuzzy Number model) has been

proposed to add Fuzzy Underestimation to the existing algorithms, thus a new

improved version of searching techniques under uncertainty has been suggested

to be helpful in many real life problems of computer science, especially in AI field.

The corresponding algorithms have been given, and the algorithms have been

explained by examples and applications.

This chapter concludes the dissertation and presents comparisons with

previous work. It provides analysis for the simulation results of the proposed

algorithms. Future work will be explained in the last section.

www.manaraa.com

187

6.2 Conclusions
The proposed solution has been implemented and tested; the conclusions and

recommendations of the researcher are as follows:

6.2.1 Comparison between the Crisp Algorithms.
1. Dynamic programming is preferable when many paths converge on the same

place.

2. Branch-and-bound search is preferable when the tree is big and bad paths turn

distinctly bad quickly.

3. Branch-and-bound search with a guess is preferable when there is a good

lower-bound estimate of the distance remaining to the goal.

4. The A* procedure is preferable when both branch-and bound search with a

guess and dynamic programming are effective.

5. Crisp B&B has high values for Number of iteration, Time complexity, Space

complexity, and Effective Branching Factor when it is used without other

algorithms as shown in Figures (5.31,33,36,40).

6. Crisp B&B with Dynamic Programming principle also has high values for

Number of iteration, Time complexity, Space complexity and Effective

Branching Factor when it is used without other algorithms but in general it is

still superior to Crisp B&B, as shown in Figure (5.31).

7. B&B Augmented by Underestimate search technique achieve better efficiency

than regular B&B search technique as shown in Figure (5.32), where

underestimation increases the efficiency of B&B by enabling it to be more

informed.

www.manaraa.com

188

8. A* algorithm can be considered as one type of branch-and-bound algorithm but it is

better than B&B, because dynamic programming improves its efficiency.

6.2.2 Effect of Using the Underestimated Value.
When analyzing the effect of using the Underestimated value we can

observe that:

1. Maximum underestimated values means more efficient search because the

closer an underestimate to the true distance, the more efficiently the search

(because, if there is no difference at all, there is no chance of developing any

false movement); in other words if the guesses were perfect, this approach

would keep you on the optimal path at all times.

However, guesses are not perfect, and a bad overestimate somewhere along the

true optimal path may cause you to wander away from that optimal path

permanently.

2. At the other extreme, an underestimate may be so poor as to be hardly better

than a guess of zero (underestimate = 0), which certainly must always be the

ultimate underestimate of remaining distance (it has no heuristic power and

does not provide any guidance for the search).In fact; ignoring estimates of

remaining distance altogether can be viewed as the special case in which the

underestimate used is uniformly zero (underestimate of close to zero is of little

Value).

6.2.3 Effect of Using the Fuzzy Underestimated Value (α1)
When analyzing the effect of using the Fuzzy Underestimated value (α1) we

can observe that:

1. Maximum value of α = 1(which must not be so) means that we take the

www.manaraa.com

189

 estimated value as a crisp one without fuzzification, which turns Fuzzy A* or

Fuzzy B&B to crisp ones.

2. Minimum value of α = 0 means that there is no estimation, which turns Fuzzy

B&B or Fuzzy A* to crisp B&B or crisp B&B with D.P. principle consequently.

3. Good DM can make α more close to real value (optimal value), then solution

will go directly to the goal (high efficiency) but as α decreases the efficiency

will decrease but the goal guaranteed not to be overlooked, taking into

consideration that in the worst case fuzzy underestimate will not be less than

straight line distance , then it will be better than crisp underestimate in all

cases(u straight line distance ≤ α < 1), where fuzzy underestimate is more

informed than crisp underestimate.

6.2.4 Comparison between the Proposed Algorithms and
Previous Works.

The analysis and simulation results show that:

1- B&B Augmented by Fuzzy Underestimate search technique achieve better

efficiency than B&B Augmented by Crisp Underestimate search technique as

shown in Figures (5.34, 41), where fuzzy underestimation increases the

efficiency of B&B Augmented by Underestimate enabling it to be more

informed.

2. A* with Fuzzy Underestimate search technique achieve better efficiency than A*

with Crisp Underestimate search technique as shown in Figures (5.35, 42),

where fuzzy underestimation increases the efficiency of A* enabling it to be

more informed.

www.manaraa.com

191

3. The analysis and simulation results show that Fuzzy Underestimated B&B and

Fuzzy A* search techniques achieve a search time (Time complexity) less

than that of the B&B and A* with crisp underestimate as shown in Figures

(5.34, 35).

4. Space complexity for Fuzzy A* and Fuzzy Underestimated B&B are always

better (less) than those of crisp algorithms, as shown in Figures (5.37, 38)

where fuzzy methods decreases Space complexity by enabling the algorithms

to be more informed.

5. Effective Branching Factor for Fuzzy A* and Fuzzy Underestimated B&B are

always better (less) than those of crisp algorithms especially when number of

nodes are high as shown in Figures (5.41, 42); fuzzy methods decreases

Effective Branching Factor, where its value becomes closer to 1.

6.2.5 Comparison between the two Proposed Algorithms.
The analysis and the simulation results show that:

1. B&B Augmented by Fuzzy Underestimate search technique is simpler than A*

with Fuzzy Underestimate search technique with less space complexity, but

with less efficiency (more time complexity) as shown in Figures (5.39, 33).

2. A* with Fuzzy Underestimate search technique is more efficient than B&B

Augmented by Fuzzy Underestimate search technique because we add D.P.

but with more space complexity as shown in Figures (5.33, 39).

3. Fuzzy A* achieves better(less) Time complexity than Fuzzy Underestimated

B&B as shown in figure (5.33).

4. Fuzzy A* has memory requirements (space complexity) comparable to Fuzzy

Underestimated B&B as shown in Figure (5.39) as it maintains all the

www.manaraa.com

191

 generated nodes in the memory.

5. Both A* with Fuzzy Underestimate and B&B Augmented by Fuzzy

Underestimate search techniques are complete, optimal, nonredundant, and

well informed among all other algorithms.

6. High efficiency Fuzzy A* or Fuzzy Underestimated B&B has no difference as

both achieved nearly the maximum efficiency (goes directly to the goal).

6.2.6 Effects of Time complexity, Space complexity, and
Effective Branching Factor on Efficiency.

When analyzing the effects of Time complexity, Space complexity, and

Effective Branching Factor on Efficiency we observed the following:

1. Efficiency is related directly to Time complexity, where efficiency increases as

time complexity decreases; less time complexity means more efficiency for

specific technique.

2. Space complexity increased as Time complexity decreased in most cases,

where higher efficiency related to higher Space complexity.

3. One heuristic is more informed than another heuristic if a search method that

uses it needs to examine fewer nodes to reach a goal.

4. Less Effective Branching Factor for a specific search technique means that the

search technique can find optimal paths with less work.

www.manaraa.com

192

6.2.7 Expected drawbacks for the two Proposed
Algorithms.
1- A Bad Decision Maker can cause bad overestimated values, where a bad

overestimate somewhere along the true optimal path may cause you to

wander away from the optimal path permanently. Note, however, that a good

Decision Maker with good underestimates cannot cause the right path to be

overlooked, taking into consideration that in the worst case, fuzzy

underestimate will not be less than straight line distance , then it must be

better than crisp underestimate in all cases (u straight line distance ≤ α < 1).

2- Fuzzy A* has a high Space complexity as crisp A* , due to adding Dynamic

Programming Principle, where it may use all the available memory in a matter

of minutes, but after that the search practically cannot proceed although the

user would find it acceptable that the algorithm would run for hours or even

days (Bratko, 1998).

3- Unfortunately, although Fuzzy A* or Fuzzy Underestimated B&B algorithms

are more efficient than others, they still require exponential time (like Crisp A*

and Crisp Underestimated B&B). The exact amount of time they save for a

particular problem depends on the order in which the paths are explored (Rich

& Knight, 2000).

www.manaraa.com

193

6.3 Future Work.
Even though the research in this dissertation proved that the proposed fuzzy

algorithms improve the efficiency of the existing crisp algorithms, further research

can be done to improve or support the presented solution such as:

1- Interval Valued Fuzzy Number model can be used in addition to Triangular

Fuzzy Number model, where the Overestimated Value (α2) can be taken into

consideration, to exclude some choices , in order to decrease search efforts.

2- Other fuzzy models than Triangular Fuzzy Number like Trapezoidal Fuzzy

Number can be suggested.

3- Fuzzy logic can be used to consider more than one Source of Information and

convert it to a single crisp value, where fuzzy logic can be used to associate

different metrics so as to produce one corresponding crisp value.

4- Triangular Fuzzy Number can be considered to be dynamic variable according

to Source of Information or other variable conditions or parameters (rule of the

thumb), while we considered it in our work as (a-3, a, a+3) to simplify the

suggested algorithms.

5- α-cut can be considered to be dynamic variable according to Decision Maker

confidence in Source of Information, or other variable conditions, while we

considered α as a constant value according to each specific Source of

Information = (IS).

7- Statistics can be combined with fuzzy logic for some uncertainties.

www.manaraa.com

194

1. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: theory and
application. Physica Verlag, 1999.

2. Baldwin, J.F. (1981). Fuzzy logic and fuzzy reasoning. In: Mamdani,
E.H. And Gaines, B.R. (eds.), Fuzzy Reasoning and Its
Applications, Academic Press, London, PP. 133-148.

3. Bangoli, C. And & Smith, H. C.(1998). The Theory of Fuzzy Logic and
its Application to Real Estate Valuation. In: Journal of Real Estate
Research, volume 16, number 2, PP. 169-199.

4. Bhatkar, D. P. (1994).Methods And Tools for Applied Artificial
Intelligence.(NA): CRC Press

5. Bigus, J. P. And Bigus, J. (2001). Constructing Intelligent Agents
Using JavaTM, Second Edition. Canada: Willy Computer Publishing

6. Black, P. E. (eds.) (2005, Sep. 12). Branch and Bound. in Dictionary

of Algorithms and Data Structures (online), Paul E. Black, (ed.), U.S. National

Institute of Standards and Technology.Retrieved Feb 22,.2007, Available
from: http://www.nist.gov/dads/HTML/branchNbound.html

7. Blue, M. Bush, B.W. And Puckett, J. (2002). Unified approach to fuzzy
graph problems. In Fuzzy sets and systems,125(3), pp.355-368

8. Bolloju, N. (1995). Design of an Adaptive Fuzzy Logic Controller for
Knowledge Discovery. In Steele, N.C. (eds.). Proceedings of the
International ICSC Symposium on FUZZY LOGIC, May, 1995.
Canada: Academic press International Computer Science
Conventions

9. Bratko, I. (1998).Prolog Programming for Artificial Intelligence, 3rd
ed. England: Addison-Wesely.

http://www.nist.gov/dads/
http://www.nist.gov/dads/
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/dads/HTML/branchNbound.html

www.manaraa.com

195

10. Bratko, I. (2001). Prolog Programming for Artificial Intelligence.
Pearson Education.

11. Bremner, H. And Postlethwaite, B. (1995). THE APPLICATION OF A
RELATIONAL FUZZY MODEL BASED CONTROL SYSTEM TO AN
INDUSTRIAL DRYER. In Steele, N.C. (eds.). Proceedings of the
International ICSC Symposium on FUZZY LOGIC, May, 1995.
Canada: Academic press International Computer Science
Conventions

12. Buffalo, (2007). Libraries. (on-line). Retrieved Feb. 27, 2007,
Available from: ublib.buffalo.edu/libraries/help/glossary.html.

13. Bustince, H. And Burillo, P. (1995). Interval-valued Fuzzy
Ordering Relation. In Steele, N.C. (eds.). Proceedings of the
International ICSC Symposium on FUZZY LOGIC, May, 1995.
Canada: Academic press International Computer Science
Conventions

14. Chandwani, M. And Chaudhari, N.S. (1993). An algorithm for fuzzy
control based on shortest-path framework. In Industrial Electronics,

Control, and Instrumentation, 1993. Proceedings of the IECON '93. International

Conference on 15-19 Nov. 1993, Vol.1, PP. 254 – 257.

15. Clay, P. , Crispin, A. And Crossley, S. (2000). A Comparative Analysis of
Search Methods as Applied to Shearographic Fringe Modelling. In
Loganantharaj, R. , Palm,G. And Ali, M. (eds.). Intelligent Problem
Solving Methodologies and Approaches, 13th International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, IEA/AIE 2000, June 19-22, 2000
Proceedings. USA: Springer.

16. Colton, S. (ed.) (2005). Search in Problem Solving, Lecture 3.
Retrieved from www.doc.ic.ac.uk/~sgc/teaching/v231/lecture3.html

 on 25/4/2007
17. Cooman, G. (1995). GENERALIZED POSSIBILITY AND

NECESSITY MEASURES ON FIELDS OF SETS. In Steele,
N.C. (eds.). Proceedings of the International ICSC Symposium on
FUZZY LOGIC, May, 1995. Canada: Academic press International
Computer Science Conventions

http://www.google.com.eg/url?sa=X&start=5&oi=define&q=http://ublib.buffalo.edu/libraries/help/glossary.html&usg=__aar0tORCwAL0S48rAVyd3cpKp74=
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=1044
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=1044
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=1044
http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture3.html

www.manaraa.com

196

18. Coppin, B. (2004). Artificial Intelligence Illuminated, first edition.
 USA: Jones and Bartlett publishers.

19. Doyle, P. (Dec.,2005). Search Methods. (on-line). Retrieved Dec. 5,
2005, Available from: pdoyle@cs.stanford.edu.

20. Dubious, D. And Prade, H. (1987). A Theory of Possibility.
Plenum Publishing, 1987

21. Dubious, D. And Prade, H. (1990). Fuzzy Sets and Systems:
Theory and Application. New York : Academic Press.

22. Elaine, R. (1983). Artificial Intelligence. New York: McGraw- Hill.

23. Foley, H. And Petry, F. (2000). Fuzzy Knowledge-Based System

for Performin Conflation in Geographical Information Systems. In
Loganantharaj, R. , Palm,G. And Ali, M. (eds.). Intelligent Problem
Solving Methodologies and Approaches, 13th International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, IEA/AIE 2000, June 19-22, 2000
Proceedings. USA: Springer.

24. Fujisawa, Y. And Etal (1993). Control method of manipulator/vehicle
system with fuzzy inference. In L.' Bezdek (editor), Fuzzy Logic
Technology and Application. 1993.

25. Gaines, B.R. (1976). Foundations of fuzzy reasoning. In Man t. J.
(eds.), Machine Studies, 6: PP. 623-668.

26. Godjevac, J. (1995). A learning procedure for a fuzzy system:
application to obstacle avoidance. In Steele, N.C. (eds.). Proceedings
of the International ICSC Symposium on FUZZY LOGIC, May,
1995. Canada: Academic press International Computer Science
Conventions

27. Goldberg, E. D. (1989). Genetic Algorithms in Search
Optimization and Machine Learning. Reading, MA: Addison
Wesley.

mailto:pdoyle@cs.stanford.edu

www.manaraa.com

197

28. Gorzalczany M. B. (1987). A method of inference in approximate
reasoning based on interval-valued fuzzy sets. In Fuzzy Sets and
Systems, 21: (1987) 1-17

29. Gottwald, S., And Treatise, A. (2001). On Many-Valued Logics.
Baldock, Hertfordshire, England: Research Studies Press LTD.

30. Hansen,P. Beckmann, M. And Kunzi, H.P. (1980). Multiple criteria
decision making. In: Theory and applications, Lecture Note in
Economics and in Mathematical Systems, vol. 177. Berlin:
Springer; 1980, pp. 109-27.

31. Hart, P. E., Nilsson , N. J. And Raphael, B. (1968). A formal
Basis for the Heuristic Determination Cost Paths: In IEEE
Transactions on SSC 4. PP. 100-107

32. Hart, P. E., Nilsson, N. J. And Raphael, B. (1972).Correction to
"A formal Basis for the Heuristic Determination Cost Paths" :
In SIGART Newsletter 37. PP. 28-29

33. Hellendoorn, H. (1992). The generalized models considered as a
fuzzy relation. In Fuzzy Sets and Systems 46: PP. 29-48.

34. Klein, C.M. (1991). Fuzzy shortest paths. Fuzzy Sets and Systems
1991; Vol 39:27–41.

35. Klir, G. And Yuan, B. (1995) . Fuzzy Sets And Fuzzy Logic: Theory
and Applications. India: Prentice Hall.

36. Klir, G. And Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. ISBN 0-
13-101171-5

37. Klir, G., Clair, U. H. St. And Yuan, B. (1997). Fuzzy Set Theory
Foundations and Applications. (on-line). Retrieved Feb. 20, 2007,
Available: www.wikipedia.org/wiki, This page was last modified
1997.

38. Kruse, L.; Schmidt, E.; Jochens, G.; Stammermann, A.; And Nebel,
W. (2000).Lower bound estimation for low power high-level synthesis.
System Synthesis, 2000. Proceedings. The 13th International
Symposium on 20-22 Sept. 2000, PP. 180 - 185

http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131011715
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131011715
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7021
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7021

www.manaraa.com

198

39. KU Libraries. (2007). Data base search techniques (on-line).
Retrieved Feb. 27, 2007, Available: www.lib.ku.edu.

40. Li, X. And Wu, J. (2002). Searching techniques in peer-to-peer
networks (on-line). Retrieved Feb. 27, 2007, Available:
www.cse.fau.edu.

41. Lin, K. And Chern, M. (1994). The fuzzy shortest path problem and its
most vital arcs. In Fuzzy Sets and Systems 1994;58:343-53.

42. Loganantharaj, R. And Thomas, B.(2000). An Overview of a
Synergetic Combination of Local Search with Evolutionary Learning to
Solve Optimization Problems. . In Loganantharaj, R., Palm, G. And Ali,
M. (eds.). Intelligent Problem Solving Methodologies and
Approaches, 13th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems,
IEA/AIE 2000, June 19-22, 2000 Proceedings. USA: Springer.

43. Luger, G. F. (2005). Artificial intelligence Structures and
Strategies for Complex Problem Solving, Fifth Edition. England:
Addison-Wesley

44. Guangwu, M. Basic Theory for interval-valued fuzzy sets. In
Mathematica Applicata, Vol.2 1993, pp. 129-135.

45. Ma, W.M. And Chen, G.Q.

(2005). Competitive analysis for the on-line

fuzzy shortest path problem. In Proceedings of the Fourth
International Conference on Machine Learning and Cybernetics,
Vol. 2, 18-21 August 2005. PP. 862-867.

46. Magdalena, L. And Monasterio, F. (1993). Fuzzy controlled gait
synthesis for a biped walking machine. In L Bezdek (editor), Fuzzy
Logic Technology and Application. 1993.

47. Mares, M. And Horak, J. (1983). Fuzzy quantities in networks. In
Fuzzy Sets and Systems, Vol. 10, 1983, pp. 135-155.

48. Moazeni, S.(2005). Fuzzy shortest path problem with finite fuzzy
quantities. In NAFIPS 2005-Annual Meeting of the North American Fuzzy
Information Processing Society, 26-28 June, 2005 PP. 664 - 669.

http://www.lib.ku.edu/
http://www.cse.fau.edu/
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10389

www.manaraa.com

199

49. Moore, R. E. (1969).Interval Analysis. New Jersey: Prentice Hall.

50. Ncsu, (2007). (on-line). Retrieved Feb. 27, 2007, Available from:

www.ces.ncsu.edu/depts/pp/soybeanrust/netterms.php
51. Negnevitsky, M. (2002). Artificial Intelligence A Guide to

Intelligent Systems, England: Pearson Education Limited.

52. Newell, A. And Simon, H. A. (1976). Computer science as Empirical
inquiry: symbols and search. In Communications of the ACM, 19(3):
113-126.

53. Nilsson, N. (1971). Problem-Solving Methods in Artificial
Intelligence. New York: McGraw-Hill.

54. Okada, S. (2001). Interactions among Paths in Fuzzy Shortest Path
Problems. In 9th International Fuzzy Systems Association (IFSA)
World Congress and 20th NAFIPS International Conference:
Vancouver, Canada,Vol.1 pp.41-46

55. Okada, S. And Soper, T.A. (2005). A shortest path problem on a
network with fuzzy arc lengths. In Fuzzy Sets and Systems 2000;
Vol. 109:129-140.

56. Pearl, J. (1984). Heuristic: Intelligent Strategies for Computer
Problem Solving. Reading MA: Addison-Wisley

57. Pearl, J. (1984). Heuristics. England: Addison-Wesely.

58. Polya, G. (1945). How to Solve It. Princeton, NJ: Princeton University
Press.

59. Qadi, Z. And Rasras, R. (2003) Artificial Intelligence. Amman: Arab

Community Library.

60. Rajagopalan, A., Washington, G., Rizzoni, G. And Guezennec. Y. (2003).
Development of Fuzzy Logic & neural network Control a Advanced
Emissions Modeling for Parallel Hybrid Vehicles. USA: National
Renewable Energy laboratory.

www.manaraa.com

211

61. Rich, E. And Knight, K. (2000). Artificial Intelligence, Second
Edition. New Delhi: Tata McGraw-Hill Publishing Company

62. Rjgc, (2007). المواصلات والاثار-المملكة الاردنية الهاشمية (on-line). Retrieved April.
23, 2007, Available: www.rjgc.gov.jo, Royal Jordanian Geographic
Centre.

63. Roy M. K. And Biswas, R. (1992). I-v fuzzy relations and Sanchez's
approach for medical diagnosis. In Fuzzy Sets and Systems, 47:
(1992) 35-38.

64. Ruan, D. (1995). FLINS, a Bridge between Fuzzy Logic and the

Nuclear Industrial World. In Steele, N.C. (eds.). Proceedings of the
International ICSC Symposium on FUZZY LOGIC, May, 1995.
Canada: Academic press International Computer Science
Conventions

65. Russell, S. And Norvig, P. (2003). Artificial Intelligence,A
Modern Approach, Second Edition. New Jersey, USA: Pearson
Education, Inc.

66. Saffiotti, A. Ruspini, E. And Kurt, K. (1993). Blending reactivity and
goal-directedness in a fuzzy controller. In L. Bezdek (editor), Fuzzy
Logic Technology and Application. 1993.

67. Sambuc R. (1975). Functions Φ-Floues. Application a 1'aide au
Diagnostic en Pathologic Thyroidienne. In This de Doctoral en
Medecine, Marseille, 1975.

68. San, (2007). Glossary. (on-line). Retrieved Feb. 27, 2007, Available
from: home.san.rr.com/denbeste/glossary.html

http://home.san.rr.com/denbeste/glossary.html%20-27-2-2007

www.manaraa.com

211

69. Schaeffer, J. And Plant, A. (2000). Unifying Single-Agent and Two-
Player Search. In Hamilton, H. J. (eds.). Advances in Artificial in
Intelligence, Lecture Notes in Artificial Intelligence 1822, Sub series
of lecture Notes in computer science. Canada: 13th Biennial
Conference of the Canadian Society for Computational Studies of
Intelligence, AI 2000

70. Shafer G. (1976). A Mathematical Theory of Evidence. Princeton
University Press, 1976

71. Silva, P. C. (1995). FUZZY SITUATED-AUTOMATA
APPROACH. In Steele, N.C. (eds.). Proceedings of the
International ICSC Symposium on FUZZY LOGIC, May, 1995.
Canada: Academic press International Computer Science
Conventions

72. Siue, (2007). Library research guides glossary of terms (on-line).
Retrieved Feb. 27, 2007, Available from:
www.library.siue.edu/lib/research_tools. html.

73. Slagle, J.R. And Lee, R.C.T.(1971). Applications of Game Tree
Searching Techniques to Sequential Pattern Recognition. In
CACM (14), 1971, pp. 103-110

74. Sun, K. And Hadipriono, F.C. (1995). RATING SPACE FOR FUZZY
REASONING. In Steele, N.C. (eds.). Proceedings of the International
ICSC Symposium on FUZZY LOGIC, May, 1995. Canada: Academic
press International Computer Science Conventions

75. Takahashi, M. T. And Yamakami, A. (2005). On Fuzzy Shortest Path
Problems with Fuzzy Parameters: an Algorithmic Approach. In
NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy
Information Processing Society, PP. 654-657.

76. Thomas, E. And Portegys, A. (1995). A Search Technique for
Pattern Recognition Using Relative Distances. In IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 17, No. 9,
September 1995, pp. 910-912

http://www.library.siue.edu/lib/research_tools.%20html.
http://iris.usc.edu/Vision-Notes/bibliography/author/sla.html#Slagle, J.R.
http://iris.usc.edu/Vision-Notes/bibliography/author/lee.html#Lee, R.C.T.
http://iris.usc.edu/Vision-Notes/bibliography/journal/cac.html#CACM(14)
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/trans/tp/&toc=comp/trans/tp/1995/09/i9toc.xml

www.manaraa.com

212

77. Turksen, I.B. (1986). Interval valued fuzzy sets based on normal
form. In Fuzzy Sets and Systems, Vol.20, 1986, pp. 191-210.

78. UBC Lib.,The university of British Columbia Library (2007).Web
search techniques (on-line). Retrieved Feb. 27, 2007, Available:
www.library. bcu.ca/home/websearch/quick.html.

79. ucsd, (2007). Search Cognitive Science 108b Lecture Notes. (on-
line). Retrieved April. 25, 2007, Available:
http://cogsci.ucsd.edu/~batali/108b/lectures/heuristic.html

80. Wikipedia Org. (2007). Fuzzy Logic (on-line). Retrieved Feb. 25,
2007, Available: www.wikipedia.org/wiki/Fuzzy_logic, This page was
last modified 22 February 2007.

81. Wikipedia Org. (2007).Define: Search (on-line). Retrieved Feb. 27,
2007, Available: www.wikipedia.org/wiki/Searching

82. Winston, P. H.(2000).Artificial Intelligence, 3rd Edition. India:
Addison- Wesley.

83. Yager, R.R. (1980). An approach to inference in approximate
reasoning. In Man, t. J., Machine Studies, 13:PP. 323-338.

84. Yao, J.S. And Lin, F.T. (2003). Fuzzy Shortest-Path Network
Problems With Uncertain Edge Weights. In Journal of Information
Science and Engineering 19, 329-351 (2003)

85. Zadeh L.A. (1965). Fuzzy sets. In Information and Control, Vol. 8,
pp. 338-353.

86. Zadeh L.A. (1968). Fuzzy Algorithm. In Inform. And Control 12, 94-
102.

87. Zadeh L.A. (1973). Outline of a new approach to the analysis of
complex systems and decision processes, interval-valued fuzzy
sets. In IEEE Trans. Systems Man Cybernet, 3: (1973) 2844.

88. Zadeh L.A. (1975). Fuzzy logic and approximate reasoning. In
Syntheses 30:PP. 407- 428

http://www.wikipedia.org/wiki/Searching

www.manaraa.com

213

89. Zadeh L.A. (1975). The concept of a linguistic variable and its
application to approximate reasoning. In Information Sciences, Vol.
8, pp. 199–249, 301–357; Vol. 9, pp. 43–80.

90. Zadeh L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility.
In Fuzzy Sets and Systems, Vol. 1, No. 1, pp. 3–28

91. Zadeh L.A. (1985). Syllogistic Reasoning in Fuzzy Logic and its
Application to Usuality and Reasoning with Dispositions . In
IEEE, 6, pp754 -763, 1985

92. Zhou , B. And Mouftah, H. T. (2004). Adaptive Shortest Path Routing
in GMPLS-based Optical Networks Using Fuzzy Link Costs. In
Electrical and Computer Engineering, 2004. Canadian
Conference CCECE 2004- CCGEI 2004, Vol.3 , May 2004, PP. 1653
- 1657

93. Zimmermann, H. J. (1991). Fuzzy Set Theory and Its
Applications. Dordrecht Kluwer: Academic Publication.

www.manaraa.com

214

Appendix 1
Simulation Pseudocodes:

The pseudocodes for the six algorithms are presented bellow:

1 Branch & Bound Search pseudocode

The pseudocode for Branch & Bound Search technique will be introduced in this
appendix, while the corresponding algorithm (procedure) was presented in
section (3.2), Branch and Bound Search algorithm explanation was detailed
in figure(3.3), and a Branch and Bound Search Example was detailed in
figure(3.2).

To conduct a branch-and-bound search:
Initialize all vertices to "undiscovered."
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblt(j).ForeColor = vbRed
 Else
 lblt(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = v(i)
 order = i
 End If
 Next i
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 2 To 63
 If w(r) = True And v(r) >= v(order) Then
 lblx(r).Visible = True

www.manaraa.com

215

 goal = 0
 ElseIf w(r) = True And v(r) < v(order) Then
 order1 = order
 order = r
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 Wend
End If

1 Branch & Bound Search with Underestimates pseudocode

The pseudocode for Branch & Bound with Underestimates Search technique will
be introduced in this appendix, while the corresponding algorithm (procedure)
was presented in section (3.2.1), algorithm explanation was detailed in
figure(3.7), and an example was detailed in figure(3.6).

To conduct a branch-and-bound search with underestimates:
Initialize all vertices to "undiscovered."
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblgg(j).ForeColor = vbRed
 Else
 lblgg(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = g(i)
 order = i
 End If
 Next i
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 End If

www.manaraa.com

216

 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= g(order) Then
 lblx(r).Visible = True
 goal = 0
 ElseIf w(r) = True And v(r) < g(order) Then
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 Wend
End If

__
_

2 B&B Search with Fuzzy Underestimation pseudocode

The pseudocode for Branch & Bound with Fuzzy Underestimates Search
technique will be introduced in this appendix, while the corresponding algorithm
(procedure) was presented in section (3.3), flow chart procedure is shown in
figure (3.12), algorithm explanation is detailed in figure(3.17), and two
applications (examples) is detailed in figure(3.16) as a random net example
and in figure(3.22) as an example for real roads between two major
Jordanian cities; from Al Karak to Irbid according to an official map of Jordan.

To conduct a branch-and-bound search with fuzzy Underestimates:
Initialize all vertices to "undiscovered."
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lbluft(j).ForeColor = vbRed
 Else
 lbluft(j).ForeColor = vbBlack
 End If
 Next j

www.manaraa.com

217

 For i = 2 To 63
 If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = uft(i)
 order = i
 End If
 Next i
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= uft(order) Then
 lblx(r).Visible = True
 goal = 0
 ElseIf w(r) = True And v(r) < uft(order) Then
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 Wend
End If

__
_

4 B&B Search with Dynamic Programming pseudocode

The pseudocode for Branch & Bound with Dynamic Programming Search
technique will be introduced in this appendix, while the corresponding algorithm
(procedure) was presented in section (4.2), algorithm explanation is detailed
in figure(4.4), and an example is detailed in figure(4.3).

To conduct a Branch-and-Bound search with dynamic programming:
Initialize all vertices to "undiscovered."
goal = 0

www.manaraa.com

218

While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblt(j).ForeColor = vbRed
 Else
 lblt(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = v(i)
 order = i
 End If
 Next i
 For p = 1 To 62
 For q = 2 To 63
 If ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or (w(q)
= True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) < v(q) Then
vbInformation, "Duplication")
 w(q) = False
 lblx(q).Visible = True
 lbl(q).ForeColor = vbBlack
 ElseIf ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or
(w(q) = True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) > v(q)
Then
vbInformation, "Duplication")
 w(p) = False
 lblx(p).Visible = True
 lbl(p).ForeColor = vbBlack
 End If
 Next q
 Next p
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration6 = iteration6 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= v(order) Then
 lblx(r).Visible = True
 goal = 0
 ElseIf w(r) = True And v(r) < v(order) Then
 goal = 0
 Else

www.manaraa.com

219

 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 Wend
End If

__

5 A* Search Technique pseudocode

The pseudocode for A* Search Technique will be introduced in this appendix,
while the corresponding algorithm (procedure) was presented in section (4.2.1),
algorithm explanation is detailed in figure(4.8), and an example is detailed in
figure(4.7).

To conduct the A* search technique:
Initialize all vertices to "undiscovered."

goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblgg(j).ForeColor = vbRed
 Else
 lblgg(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption =

a(2))) Then
 min = g(i)
 order = i
 End If
 Next i
 For p = 1 To 62
 For q = 2 To 63
 If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) <

g(q) Then
 w(q) = False
 lblx(q).Visible = True
 ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p)

> g(q) Then
 w(p) = False
 lblx(p).Visible = True
 End If
 Next q
 Next p

www.manaraa.com

211

 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= g(order) Then
 lblx(r).Visible = True
 goal = 0
 ElseIf w(r) = True And v(r) < g(order) Then
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1

 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 Wend

End If

__

6 A* with Fuzzy Underestimates Search technique

The pseudocode for A* with Fuzzy Underestimates Search technique will be

introduced in this appendix, while the corresponding algorithm (procedure) was
presented in section (4.3), flow chart procedure is shown in figure (4.9),
algorithm explanation is detailed in figure(4.14), and two applications
(examples) was detailed in figure(4.13) as a random net example and in
figure(4.19) as an example for real roads between two major Jordanian
cities; from Al Karak to Irbid according to an official map of Jordan.

www.manaraa.com

211

To conduct the A* with Fuzzy Underestimates search technique use the
following:
Initialize all vertices to "undiscovered."
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lbluft(j).ForeColor = vbRed
 Else
 lbluft(j).ForeColor = vbBlack
 End If
 Next j

 For i = 2 To 63
 If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = uft(i)
 order = i
 End If
 Next i
 For p = 1 To 62
 For q = 2 To 63
 If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) < uft(q) Then
 w(q) = False
 lblx(q).Visible = True
 ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) > uft(q)
Then
 w(p) = False
 lblx(p).Visible = True
 End If
 Next q
 Next p
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= uft(order) Then
 lblx(r).Visible = True
 goal = 0
 ElseIf w(r) = True And v(r) < uft(order) Then
 goal = 0
 Else
 goal = 1
 End If

www.manaraa.com

212

 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 Wend
End If

www.manaraa.com

213

Appendix 2
Simulation code:

'Go results screen with the six algorithms
iteration3 = 0
iteration4 = 0
iteration5 = 0
iteration6 = 0
iteration7 = 0
iteration8 = 0
time3 = 0
time4 = 0
time5 = 0
time6 = 0
time7 = 0
time8 = 0
space3 = 0
space4 = 0
space5 = 0
space6 = 0
space7 = 0
space8 = 0
ebf3 = 0
ebf4 = 0
ebf5 = 0
ebf6 = 0
ebf7 = 0
ebf8 = 0

'Branch & Bound Search

For i = 2 To 63
 lin(i - 1).BorderColor = vbBlack
 lbl(i).ForeColor = vbBlack
Next i
node = a(1)
flag = False
i = 2
steps = 0
lbl(1).ForeColor = &HC000&
For j = 1 To 63
 w(j) = False
Next j
For j = 1 To 63
 lblt(j).ForeColor = vbBlack
 lblgg(j).ForeColor = vbBlack
 lbluft(j).ForeColor = vbBlack
Next j
For j = 1 To 63
 lblx(j).Visible = False
Next j
iteration3 = 0

www.manaraa.com

214

If lbl(2).Visible = True And lbl(3).Visible = True Then
 lblt(2).ForeColor = vbRed
 lblt(3).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lbl(3).ForeColor = vbRed
 time3 = time3 + 3
 If v(2) <= v(3) Then
 w(3) = True
 lbl(3).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time3 = time3 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time3 = time3 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time3 = time3 + 2
 End If
 Else
 w(2) = True
 lbl(2).ForeColor = vbRed
 lin(2).BorderColor = vbBlue
 lbl(3).ForeColor = vbBlue
 time3 = time3 + 3
 If lbl(6).Visible Then
 w(6) = True
 lbl(6).ForeColor = vbRed
 time3 = time3 + 2
 End If
 If lbl(7).Visible Then
 w(7) = True
 lbl(7).ForeColor = vbRed
 time3 = time3 + 2
 End If
 End If
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then
 lblt(2).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time3 = time3 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time3 = time3 + 3
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time3 = time3 + 3
 End If
End If

www.manaraa.com

215

iteration3 = iteration3 + 1
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblt(j).ForeColor = vbRed
 time3 = time3 + 2
 Else
 lblt(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = v(i)
 order = i
 End If
 Next i
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration3 = iteration3 + 1
 time3 = time3 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 time3 = time3 + 2
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 time3 = time3 + 2
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 2 To 63
 If w(r) = True And v(r) >= v(order) Then
 lblx(r).Visible = True
 time3 = time3 + 2
 space3 = space3 + 1
 goal = 0
 ElseIf w(r) = True And v(r) < v(order) Then
 order1 = order
 order = r
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1

www.manaraa.com

216

 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 time3 = time3 + 2
 Wend
End If
For i = 1 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 ebf3 = ebf3 + 1
 End If
Next i
For i = 2 To 3
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath3 = 1
 End If
Next i
For i = 4 To 7
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath3 = 2
 End If
Next i
For i = 8 To 15
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath3 = 3
 End If
Next i
For i = 16 To 31
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath3 = 4
 End If
Next i
For i = 32 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath3 = 5
 End If
Next i

'Branch & Bound Search with Crisp Underestimates

For i = 2 To 63
 lin(i - 1).BorderColor = vbBlack
 lbl(i).ForeColor = vbBlack
Next i
node = a(1)
flag = False
i = 2
steps = 0
lbl(1).ForeColor = &HC000&
For j = 1 To 63
 w(j) = False
Next j
For j = 1 To 63

www.manaraa.com

217

 lblt(j).ForeColor = vbBlack
 lblgg(j).ForeColor = vbBlack
 lbluft(j).ForeColor = vbBlack
Next j
For j = 1 To 63
 lblx(j).Visible = False
Next j
iteration4 = 0
If lbl(2).Visible = True And lbl(3).Visible = True Then
 lblgg(2).ForeColor = vbRed
 lblgg(3).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lbl(3).ForeColor = vbRed
 time4 = time4 + 3
 If g(2) <= g(3) Then

 w(3) = True
 lbl(3).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time4 = time4 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time4 = time4 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time4 = time4 + 2
 End If
 Else
 w(2) = True
 lbl(2).ForeColor = vbRed
 lin(2).BorderColor = vbBlue
 lbl(3).ForeColor = vbBlue
 time4 = time4 + 3
 If lbl(6).Visible Then
 w(6) = True
 lbl(6).ForeColor = vbRed
 time4 = time4 + 2
 End If
 If lbl(7).Visible Then
 w(7) = True
 lbl(7).ForeColor = vbRed
 time4 = time4 + 2
 End If
 End If
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then
 lblgg(2).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time4 = time4 + 3
 If lbl(4).Visible Then
 w(4) = True

www.manaraa.com

218

 lbl(4).ForeColor = vbRed
 time4 = time4 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time4 = time4 + 2
 End If
End If
iteration4 = iteration4 + 1
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblgg(j).ForeColor = vbRed
 time4 = time4 + 2
 Else
 lblgg(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = g(i)
 order = i
 End If
 Next i
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration4 = iteration4 + 1
 time4 = time4 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 time4 = time4 + 2
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 time4 = time4 + 2
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= g(order) Then
 lblx(r).Visible = True
 time4 = time4 + 2
 space4 = space4 + 1
 goal = 0
 ElseIf w(r) = True And v(r) < g(order) Then
 goal = 0
 Else

 goal = 1
 End If

www.manaraa.com

219

 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 time4 = time4 + 2
 Wend
End If
For i = 1 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 ebf4 = ebf4 + 1
 End If
Next i

For i = 2 To 3
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath4 = 1
 End If
Next i
For i = 4 To 7
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath4 = 2
 End If
Next i
For i = 8 To 15
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath4 = 3
 End If
Next i
For i = 16 To 31
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath4 = 4
 End If
Next i
For i = 32 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath4 = 5
 End If
Next i

'Branch & Bound Search with Fuzzy Underestimates.

For i = 2 To 63
 lin(i - 1).BorderColor = vbBlack
 lbl(i).ForeColor = vbBlack
Next i
node = a(1)
flag = False
i = 2
steps = 0
lbl(1).ForeColor = &HC000&

For j = 1 To 63
 w(j) = False

www.manaraa.com

221

Next j
For j = 1 To 63
 lblt(j).ForeColor = vbBlack
 lblgg(j).ForeColor = vbBlack
 lbluft(j).ForeColor = vbBlack
Next j
For j = 1 To 63
 lblx(j).Visible = False
Next j
iteration5 = 0
If lbl(2).Visible = True And lbl(3).Visible = True Then
 lbluft(2).ForeColor = vbRed
 lbluft(3).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lbl(3).ForeColor = vbRed
 time5 = time5 + 3
 If uft(2) <= uft(3) Then
 w(3) = True
 lbl(3).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time5 = time5 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time5 = time5 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time5 = time5 + 2
 End If
 Else
 w(2) = True
 lbl(2).ForeColor = vbRed
 lin(2).BorderColor = vbBlue
 lbl(3).ForeColor = vbBlue
 time5 = time5 + 3
 If lbl(6).Visible Then
 w(6) = True
 lbl(6).ForeColor = vbRed
 time5 = time5 + 2
 End If
 If lbl(7).Visible Then
 w(7) = True
 lbl(7).ForeColor = vbRed
 time5 = time5 + 2
 End If
 End If
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then
 lbluft(2).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time5 = time5 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time5 = time5 + 2

www.manaraa.com

221

 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time5 = time5 + 23
 End If
End If
iteration5 = iteration5 + 1
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lbluft(j).ForeColor = vbRed
 time5 = time5 + 2
 Else
 lbluft(j).ForeColor = vbBlack
 End If
 Next j

 For i = 2 To 63
 If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = uft(i)
 order = i
 End If
 Next i
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration5 = iteration5 + 1
 time5 = time5 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 time5 = time5 + 2
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 time5 = time5 + 2
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= uft(order) Then
 lblx(r).Visible = True
 time5 = time5 + 2
 space5 = space5 + 1
 goal = 0
 ElseIf w(r) = True And v(r) < uft(order) Then
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend

www.manaraa.com

222

If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 time5 = time5 + 2
 Wend
End If
For i = 1 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 ebf5 = ebf5 + 1
 End If
Next i
For i = 2 To 3
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath5 = 1
 End If
Next i
For i = 4 To 7
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath5 = 2
 End If
Next i
For i = 8 To 15
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath5 = 3
 End If
Next i
For i = 16 To 31
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath5 = 4
 End If
Next i
For i = 32 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath5 = 5
 End If
Next i

'Branch && Bound Search with Dynamic Programming.

For i = 2 To 63
 lin(i - 1).BorderColor = vbBlack
 lbl(i).ForeColor = vbBlack
Next i
node = a(1)
flag = False
i = 2
steps = 0
lbl(1).ForeColor = &HC000&
For j = 1 To 63
 w(j) = False
Next j
For j = 1 To 63

www.manaraa.com

223

 lblt(j).ForeColor = vbBlack
 lblgg(j).ForeColor = vbBlack
 lbluft(j).ForeColor = vbBlack
Next j
For j = 1 To 63
 lblx(j).Visible = False
Next j
iteration6 = 0
If lbl(2).Visible = True And lbl(3).Visible = True Then
 lblt(2).ForeColor = vbRed
 lblt(3).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lbl(3).ForeColor = vbRed
 time6 = time6 + 3
 If v(2) <= v(3) Then
 w(3) = True
 lbl(3).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time6 = time6 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time6 = time6 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time6 = time6 + 2
 End If
 Else
 w(2) = True
 lbl(2).ForeColor = vbRed
 lin(2).BorderColor = vbBlue
 lbl(3).ForeColor = vbBlue
 time6 = time6 + 3
 If lbl(6).Visible Then
 w(6) = True
 lbl(6).ForeColor = vbRed
 time6 = time6 + 2
 End If
 If lbl(7).Visible Then
 w(7) = True
 lbl(7).ForeColor = vbRed
 time6 = time6 + 2
 End If
 End If
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then
 lblt(2).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time6 = time6 + 3
 If lbl(4).Visible Then
 w(4) = True

www.manaraa.com

224

 lbl(4).ForeColor = vbRed
 time6 = time6 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time6 = time6 + 2
 End If
End If
iteration6 = iteration6 + 1
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblt(j).ForeColor = vbRed
 time6 = time6 + 2
 Else
 lblt(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And v(i) < min) Or ((w(i) = True And v(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = v(i)
 order = i
 End If
 Next i
 For p = 1 To 62
 For q = 2 To 63
 If ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or (w(q)
= True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) < v(q) Then
 w(q) = False
 lblx(q).Visible = True
 time6 = time6 + 2
 space6 = space6 + 1
 lbl(q).ForeColor = vbBlack
 ElseIf ((w(p) = True And w(q) = True) Or (w(p) = True And lbl(q).ForeColor = vbBlue) Or
(w(q) = True And lbl(p).ForeColor = vbBlue)) And lbl(p).Caption = lbl(q).Caption And v(p) > v(q)
Then
 w(p) = False
 lblx(p).Visible = True
 time6 = time6 + 3
 space6 = space6 + 1
 lbl(p).ForeColor = vbBlack
 End If
 Next q
 Next p
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration6 = iteration6 + 1
 time6 = time6 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True

www.manaraa.com

225

 lbl(2 * order).ForeColor = vbRed
 time6 = time6 + 2
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= v(order) Then
 lblx(r).Visible = True
 time6 = time6 + 2
 space6 = space6 + 1
 goal = 0
 ElseIf w(r) = True And v(r) < v(order) Then
 goal = 0
 Else

 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 time6 = time6 + 2
 Wend
End If
For i = 1 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 ebf6 = ebf6 + 1
 End If
Next i
For i = 2 To 3
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath6 = 1
 End If
Next i
For i = 4 To 7
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath6 = 2
 End If
Next i
For i = 8 To 15
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath6 = 3
 End If
Next i
For i = 16 To 31
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath6 = 4
 End If

www.manaraa.com

226

Next i
For i = 32 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath6 = 5
 End If
Next i

'A* Search.

For i = 2 To 63
 lin(i - 1).BorderColor = vbBlack
 lbl(i).ForeColor = vbBlack
Next i
node = a(1)
flag = False
i = 2
steps = 0
lbl(1).ForeColor = &HC000&
For j = 1 To 63
 w(j) = False
Next j
For j = 1 To 63
 lblt(j).ForeColor = vbBlack
 lblgg(j).ForeColor = vbBlack
 lbluft(j).ForeColor = vbBlack
Next j
For j = 1 To 63
 lblx(j).Visible = False
Next j
iteration7 = 0
If lbl(2).Visible = True And lbl(3).Visible = True Then
 lblgg(2).ForeColor = vbRed
 lblgg(3).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lbl(3).ForeColor = vbRed
 time7 = time7 + 3
 If g(2) <= g(3) Then
 w(3) = True
 lbl(3).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time7 = time7 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time7 = time7 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time7 = time7 + 2
 End If
 Else

www.manaraa.com

227

 w(2) = True
 lbl(2).ForeColor = vbRed
 lin(2).BorderColor = vbBlue
 lbl(3).ForeColor = vbBlue
 time7 = time7 + 3
 If lbl(6).Visible Then
 w(6) = True
 lbl(6).ForeColor = vbRed
 time7 = time7 + 2
 End If
 If lbl(7).Visible Then
 w(7) = True
 lbl(7).ForeColor = vbRed
 time7 = time7 + 2
 End If
 End If
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then
 lblgg(2).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time7 = time7 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time7 = time7 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time7 = time7 + 2
 End If
End If
iteration7 = iteration7 + 1
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lblgg(j).ForeColor = vbRed
 time7 = time7 + 2
 Else
 lblgg(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And g(i) < min) Or ((w(i) = True And g(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = g(i)
 order = i
 End If
 Next i
 For p = 1 To 62
 For q = 2 To 63

www.manaraa.com

228

 If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) < g(q) Then
 w(q) = False
 lblx(q).Visible = True
 time7 = time7 + 2
 space7 = space7 + 1
 ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And g(p) > g(q)
Then
 w(p) = False
 lblx(p).Visible = True
 time7 = time7 + 2
 space7 = space7 + 1
 End If
 Next q
 Next p
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration7 = iteration7 + 1
 time7 = time7 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 time7 = time7 + 2
 End If

 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 time7 = time7 + 2
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= g(order) Then
 lblx(r).Visible = True
 time7 = time7 + 4
 space7 = space7 + 1
 goal = 0
 ElseIf w(r) = True And v(r) < g(order) Then
 goal = 0
 Else
 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 time7 = time7 + 2
 Wend
End If

www.manaraa.com

229

For i = 1 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 ebf7 = ebf7 + 1
 End If
Next i
For i = 2 To 3
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath7 = 1
 End If
Next i
For i = 4 To 7
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath7 = 2
 End If
Next i
For i = 8 To 15
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath7 = 3
 End If
Next i
For i = 16 To 31
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath7 = 4
 End If
Next i
For i = 32 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath7 = 5
 End If
Next i

'A* Search with Fuzzy Underestimation.

For i = 2 To 63
 lin(i - 1).BorderColor = vbBlack
 lbl(i).ForeColor = vbBlack
Next i
node = a(1)
flag = False
i = 2
steps = 0
lbl(1).ForeColor = &HC000&
For j = 1 To 63
 w(j) = False
Next j
For j = 1 To 63
 lblt(j).ForeColor = vbBlack
 lblgg(j).ForeColor = vbBlack
 lbluft(j).ForeColor = vbBlack
Next j
For j = 1 To 63
 lblx(j).Visible = False
Next j

www.manaraa.com

231

iteration8 = 0
If lbl(2).Visible = True And lbl(3).Visible = True Then
 lbluft(2).ForeColor = vbRed
 lbluft(3).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lbl(3).ForeColor = vbRed
 time8 = time8 + 3
 If uft(2) <= uft(3) Then
 w(3) = True
 lbl(3).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time8 = time8 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time8 = time8 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time8 = time8 + 2
 End If
 Else
 w(2) = True
 lbl(2).ForeColor = vbRed
 lin(2).BorderColor = vbBlue
 lbl(3).ForeColor = vbBlue
 time8 = time8 + 3
 If lbl(6).Visible Then
 w(6) = True
 lbl(6).ForeColor = vbRed
 time8 = time8 + 2
 End If
 If lbl(7).Visible Then
 w(7) = True
 lbl(7).ForeColor = vbRed
 time8 = time8 + 2
 End If
 End If
ElseIf lbl(2).Visible = True And lbl(3).Visible = False Then
 lbluft(2).ForeColor = vbRed
 lbl(2).ForeColor = vbRed
 lin(1).BorderColor = vbBlue
 lbl(2).ForeColor = vbBlue
 time8 = time8 + 3
 If lbl(4).Visible Then
 w(4) = True
 lbl(4).ForeColor = vbRed
 time8 = time8 + 2
 End If
 If lbl(5).Visible Then
 w(5) = True
 lbl(5).ForeColor = vbRed
 time8 = time8 + 2
 End If
End If

www.manaraa.com

231

iteration8 = iteration8 + 1
goal = 0
While goal = 0
 min = 1000
 For j = 1 To 63
 If w(j) = True Then
 lbluft(j).ForeColor = vbRed
 time8 = time8 + 2
 Else
 lbluft(j).ForeColor = vbBlack
 End If
 Next j
 For i = 2 To 63
 If (w(i) = True And uft(i) < min) Or ((w(i) = True And uft(i) < min) And (lbl(i).Caption = a(2)))
Then
 min = uft(i)
 order = i
 End If
 Next i
 For p = 1 To 62
 For q = 2 To 63
 If w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) < uft(q) Then
 w(q) = False
 lblx(q).Visible = True
 space8 = space8 + 1
 ElseIf w(p) = True And w(q) = True And lbl(p).Caption = lbl(q).Caption And uft(p) > uft(q)
Then
 w(p) = False
 lblx(p).Visible = True
 space8 = space8 + 1
 End If
 Next q
 Next p
 w(order) = False
 lin(order - 1).BorderColor = vbBlue
 lbl(order).ForeColor = vbBlue
 iteration8 = iteration8 + 1
 time8 = time8 + 1
 If order <= 31 Then
 If lbl(2 * order).Visible = True Then
 w(2 * order) = True
 lbl(2 * order).ForeColor = vbRed
 time8 = time8 + 2
 End If
 If lbl(2 * order + 1).Visible = True Then
 w(2 * order + 1) = True
 lbl(2 * order + 1).ForeColor = vbRed
 time8 = time8 + 2
 End If
 End If
 If lbl(order).Caption = a(2) Then
 For r = 1 To 63
 If w(r) = True And v(r) >= uft(order) Then
 lblx(r).Visible = True
 space8 = space8 + 2
 goal = 0

www.manaraa.com

232

 ElseIf w(r) = True And v(r) < uft(order) Then
 goal = 0
 Else

 goal = 1
 End If
 Next r
 End If
Wend
If goal = 1 Then
 check = order
 While check > 1
 lin(check - 1).BorderColor = &HC000&
 lbl(check).ForeColor = &HC000&
 check = Int(check / 2)
 time8 = time8 + 2
 Wend
End If
For i = 1 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 ebf8 = ebf8 + 1
 End If
Next i
For i = 2 To 3
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath8 = 1
 End If
Next i
For i = 4 To 7
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath8 = 2
 End If
Next i
For i = 8 To 15
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath8 = 3
 End If
Next i
For i = 16 To 31
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath8 = 4
 End If
Next i
For i = 32 To 63
 If lbl(i).ForeColor = &HC000& Or lbl(i).ForeColor = vbBlue Or lblx(i).Visible = True Then
 dpath8 = 5
 End If
Next i

www.manaraa.com

233

Appendix 3

Fuzzy Logic

Examples where fuzzy logic is used

 Automobile and other vehicle subsystems, such as ABS and cruise control (e.g.
Tokyo monorail)

 Air conditioners
 The MASSIVE engine used in the Lord of the Rings films, which helped show huge

scale armies create random, yet orderly movements
 Cameras
 Digital image processing, such as edge detection
 Rice cookers
 Dishwashers
 Elevators
 Washing machines and other home appliances
 Video game artificial intelligence
 Language filters on message boards and chat rooms for filtering out offensive text
 Pattern recognition in Remote Sensing
 Gambit System in Final Fantasy XII

Fuzzy logic has also been incorporated into some microcontrollers and
microprocessors, for instance, the Freescale 68HC12

Fuzzy Logic Bibliography

 Ahmad M. Ibrahim, Introduction to Applied Fuzzy Electronics, ISBN 0-13-206400-6
 Von Altrock C., Fuzzy Logic and NeuroFuzzy Applications Explained (2002), ISBN

0-13-368465-2
 Biacino L., Gerla G., Fuzzy logic, continuity and effectiveness, Archive for

Mathematical Logic, 41, (2002), 643-667.
 Cignoli R., D’Ottaviano I. M. L. , Mundici D. , ‘’Algebraic Foundations of Many-

Valued Reasoning’’. Kluwer, Dordrecht, 1999.
 Cox E., The Fuzzy Systems Handbook (1994), ISBN 0-12-194270-8
 Elkan C.. The Paradoxical Success of Fuzzy Logic. November 1993. Available

from Elkan's home page.
 Hájek P., Metamathematics of fuzzy logic. Kluwer 1998.
 Hájek P., Fuzzy logic and arithmetical hierarchy, Fuzzy Sets and Systems, 3,

(1995), 359-363.
 Höppner F., Klawonn F., Kruse R. and Runkler T., Fuzzy Cluster Analysis (1999),

ISBN 0-471-98864-2.
 Klir G. and Folger T., Fuzzy Sets, Uncertainty, and Information (1988), ISBN 0-13-

345984-5.
 Klir G. , UTE H. St. Clair and Bo Yuan Fuzzy Set Theory Foundations and

Applications,1997.

http://en.wikipedia.org/wiki/Anti-lock_braking_system
http://en.wikipedia.org/wiki/Cruise_control
http://en.wikipedia.org/wiki/Air_conditioning
http://en.wikipedia.org/wiki/Massive_%28software%29
http://en.wikipedia.org/wiki/The_Lord_of_the_Rings_film_trilogy
http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Rice_cooker
http://en.wikipedia.org/wiki/Dishwasher
http://en.wikipedia.org/wiki/Elevator
http://en.wikipedia.org/wiki/Washing_machine
http://en.wikipedia.org/wiki/Home_appliance
http://en.wikipedia.org/wiki/Computer_and_video_games
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/w/index.php?title=Language_filters&action=edit
http://en.wikipedia.org/wiki/Message_boards
http://en.wikipedia.org/wiki/Chat_rooms
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Remote_Sensing
http://en.wikipedia.org/w/index.php?title=Gambit_System&action=edit
http://en.wikipedia.org/wiki/Final_Fantasy_XII
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Freescale_68HC12
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0132064006
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0133684652
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0133684652
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0121942708
http://www.cse.ucsd.edu/users/elkan/
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0471988642
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0133459845
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0133459845

www.manaraa.com

234


 Klir G. and Bo Yuan, Fuzzy Sets and Fuzzy Logic (1995) ISBN 0-13-101171-5
 Bart Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic (1993), Hyperion.

ISBN 0-7868-8021-X
 Gerla G., Effectiveness and Multivalued Logics, Journal of Symbolic Logic, 71

(2006) 137-162.
 Montagna F., Three complexity problems in quantified fuzzy logic. Studia Logica,

68,(2001), 143-152.
 Scarpellini B., Die Nichaxiomatisierbarkeit des unendlichwertigen

Prädikatenkalküls von Łukasiewicz, J. of Symbolic Logic, 27,(1962), 159-170.
 Yager R. and Filev D., Essentials of Fuzzy Modeling and Control (1994), ISBN 0-

471-01761-2
 Zimmermann H., Fuzzy Set Theory and its Applications (2001), ISBN 0-7923-7435-

5.
 Kevin M. Passino and Stephen Yurkovich, Fuzzy Control, Addison Wesley

Longman, Menlo Park, CA, 1998.
 Wiedermann J. , Characterizing the super-Turing computing power and efficiency

of classical fuzzy Turing machines, Theor. Comput. Sci. 317, (2004), 61-69.
 Zadeh L.A., Fuzzy algorithms, Information and Control, 5,(1968), 94-102.
 Zadeh L.A., Fuzzy Sets, ‘’Information and Control’’, 8 (1965) 338353.
 Zemankova-Leech, M., Fuzzy Relational Data Bases (1983), Ph. D. Dissertation,

Florida State University.

Fuzzy Logic Sample applications

 Agriculture
 GIS
 Image Processing (in Internet Archive)
 Machine Learning
 Machine Vision
 Medicine
 Model Validation
 OCR
 Robot Navigation
 Shape Recognition
 Telecommunications

http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131011715
http://en.wikipedia.org/wiki/Bart_Kosko
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=078688021X
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0471017612
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0471017612
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0792374355
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0792374355
http://jds.fass.org/cgi/reprint/84/2/400.pdf
http://www.isprs.org/istanbul2004/comm6/papers/685.pdf
http://web.archive.org/web/20050425024310/http:/www.medialab.ntua.gr/medialab/Papers2003/2003-8/8.pdf
http://en.wikipedia.org/wiki/Internet_Archive
http://www.cs.wayne.edu/~mdong/papers/paper_fuzzytree.pdf
http://udel.edu/~ebenson/Journal_Articles/Benson_ASAE_2000_Adaptive_Edge_Detection.pdf
http://www3.sympatico.ca/alawnicz/PAGE0212.PDF
http://agron.scijournals.org/cgi/content/full/94/6/1222
http://eprint.uq.edu.au/archive/00000625/02/paper13.pdf
http://www.cs.nott.ac.uk/~cxf/Papers/The_Integration.pdf
http://homepages.cae.wisc.edu/~ningyue/fuzzy.pdf
http://www.ensc.sfu.ca/~ljilja/ENSC833/Projects/chen/presentation.pdf

www.manaraa.com

235



 34

